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concerning the role of K in fatigue crack growth and, certainly for the monotonic
loading case, develop alternatives: these are the objectives of the second phase
of the program.
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,:, SUMMARY ,..\ "

The need to examine the very foundations of fracture mechanics became evident at

the close of an earlier AFOSR program [ 1]. In essence, the basic tenet of fracture - -

mechanics is that the stress intensity factor, K, controls fracture and fatigue: here the

former claim is critically examined. The underlying supporting arguments - the original

energy argument of Griffith and the more rtodern K-controlled region view - are k

considered. These considerations demonstrate that there are questionable assumptions in

both, so that the viability of K as a damage parameter for fracture has to be established ".-'-
. .,.,..~

by the physical evidence. The first question then is whether or not the critical value of K,

Ki. is a material parameter, checking data shows it need not be. The second question is _,.._

.C.,. o

can the technology be usefully predictive, even in the most simple of situations: checking

the data shows it to be unreliable in this role. At this time then. it remains to ask similar

questions concerning the role of K in fatigue crack growth and, certainly for the monotonic

loading case, develop alternatives: these are the objectives of the second phase of the

program.
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INTRODUCTION

In general, the primary objective of fracture mechanics is to predict when a

component will fail when the analysis of the associated configuration leads to singular

stresses. This is not an easy task, since the theory is saying that physically unsustainable

infinite stresses result from even infinitesimal loadings. At this time, the accepted approach ..

for dealing with such anomalous findings is Linear Elastic Fracture Mechanics (LEFM), at

least in the instance of cracked geometries. Essentially, LEFM selects the coefficient of

the stress singularity, the stress intensity factor, as the parameter which governs fracture

provided response is sufficiently brittle. As a result of an earlier AFOSR research program

[1], it became quite clear that this choice and the surrounding technology needed a full

examination. This report describes work undertaken in a one year study to this end.

In somewhat greater detail, the principal current activities within a fracture mechanics _

treatment of a monotonic loading situation may be classified as follows:

* Singularity recognition

* Evaluation of singularity participation

* Interpretation of the resulting quantified singular behaviour

We discuss findings with respect to each of these in turn in what follows.

N.
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OVERVIEW OF RESULTS OBTAINED IN RESEARCH PROGRAM

* Singularity recognition

* Typically the presence and character of singularities is well understood -seldom does

the fracture mechanics community stumble on this all-important first step. This is[

especially so for the elastic analysis of geometries containing cracks. It is also usually the

case for the elastic treatment of other configurations, and for the handling of cracks within

* nonlinear theories. Asymptotic analyses continue to be contributed in these la*,ter instances,f

e.g., respectively, [2]* and some excellent articles in the recent conference [3]. These

last, incidentally, demonstrate that the nonphysical nature of singular stresses is retained .

when one entertains yielding. La., the problem of interpreting singularities is not

circumvented by admitting plastic flow. Basically this is because, physically, elastic response

must precede plastic and elastic analyses to date continue to be plagued by singularities.**

Singularity participation

In two dimensions, analytical solutions provide explicit and exact values of singularity

participation or stress intensity, K, in some situations. In practice. though. even two-

dimensional geometries are often too complex to be tractable to a purely analytical

approach Here, however, numerical analysis can be employed to good effect Principally.

* the finite element method, when used in conjunction with a path independent integral.

* furnishes a reliable and accurate means of determining K This is primarily because the finite

element method readily adapts to the various and diverse geometries encountered in

engineering, while path independent integrals are orthogonal to any other regular fields

present in the analysis of a particular configuration. Moreover, the approach is sufficiently

ef ficient so as to meet engineering accuracy requirements in return for modest

computational effort Such efficiency levels can be demonstrated on test problems with

Copy appended for convenience.

~There do exist elastic analyses of cracks which are apparently free from singularities -these, however,.l

either fail to load the crack tip or involve an integration/ finite length scale in effect and therefore do not really
overcome the difficulty....

. .. .~ . ,~ - .. . . .



4

known exact solutions. For example, the path independent integrals devised in [4J* (5)* %

can be used to determine K to within 1% using fewer than 200 constant- strain-triangle j

elements. In all then, the development of the ability to establish singularity participation is

well in hand, at least in two-dimensional instances. And the extension of such methods to-

three dimensions is not seen as a further development of any great significance in the

overall question of the performance of fracture mechanics, [114

There are in use at present, nonetheless, some other methods of determining

singularity participation which can be shown to be quite unreliable. [7], [8] In

substance, these methods employ some kind of fit of local field data to infer K the basic

reasons f or the potontial unreliability of such local procedures are as follows. First, all

local procedures must consider quantities near but not at the crack tip. Second, at such

stations fields other than the key singular ones can contribute. Third, the extent of such

participation cannot be either completely controlled or fully accounted for. As a

consequence. for any given local procedure there exist problems on which it produces A

unacceptably erroneous results.

A corollary of the unreliability of local fitting procedures is that fracture criteria

based on some local field value cannot be reliably connected to the stress intensity

involved This means that criteria entailing crack opening displacement, crack opening angle.

or some so-called critical stress or strain at a nearby station, all fail in the second aspect

of fracture mechanics, namely establishing singularity participation. The successful

completion of this aspect is a prerequisite to successful interpretation. Accordingly it is

unreasonable to expect that any of today's local fracture criteria should prove of genuine

and significant value in practice.

Copy appended for convenience.

"Copy sent earler to AFOSR (final report an Contract No. AFOS-79-0078).



Singularity Interpretation

The first argument suggested in support of the singularity coefficient, or stress

intensity factor, as the controlling parameter in brittle fracture was, in effect, Griffith's

energy balance. In Griffith's approach, the energy source is the strain (potential) energy .. ,

released on fracture, while the sink is a surface energy term. Thus the controlling function

at the onset of fracture is the energy release rate, G. Irwin showed that G has a simple

relationship to K independent of geometry, so that Griffith's energy balance is equivalent to

the choice of the stress intensity factor as a damage parameter.

Griffith's work represented a major step forward at that time. Since, however, a

number of questions have been raised concerning the extent of its validity (e.g.. Goodier

[91). Moreover, if one simply applies the ideas to the fracture of a truly brittle material in

a unaxial tension test, one obtains [103* "

oro0 . (10

Here a, is the ultimate stress, t is the length of the specimen. Equation (1) stems from
U

the fact that the energy source has dimensions of F.L, where as the energy sink has

dimensions of F alone, F being force, L being length For the application to the tensile

test, L transpires to be t, the specimen length, While (1) is trendwise correct in tt

fracture stress decreases with increasing size, it is oversimplified. This is because C can
U

also depend on other dimensions and f' s dependence on length need not be to the -Y2

exponent, or even particularly close to this precise relation. Indeed, for sufficiently large

specimens, au is generally regarded as a material properly, independent of geometry. Thus

this simple application of Griffith's ideas raises a question as to whether or not the

assumption of a surface energy term as the dominant energy source is really valid, or even

sufficiently accurate in certain circumstances. The answer, as far as cracked geometries

are concerned, has to lie with the physical evidence.

Copy ncluded in [1 ]
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The more modern argument suggested in support of the stress intensity as the .*

controlling factor in brittle fracture is as follows. For the K-field alone at the crack-tip.

the associated field quantities are clearly in violation of the underlying yet unpolicedr

assumptions of linear elasticity, viz, infinitesimal displacement gradients, stresses in theI A

elastic range, etc. However, some distance away from the crack tip these K-fields doj

comply with underlying assumptions and may be regarded as being valid. To fix ideas, call

the radius from the crack tip outside which the K-fields are valid r. Conversely, as one

approaches the crack tip for any configuration, there comes a point after which the K-

fields dominate any regular fields present Call this radius r. As a result, if r~ < rd an

annulus is formed which may reasonably be viewed as K controlled, i.e. a region in which K

sets the boundary conditions in effect for the process zone at the crack tip. Thus under

these circumstances, given similar fracture processes in the same material, K determines

when fracture occurs.

The drawback to this argument clearly is that r may not be less than r. Some-

indication that this can occur is contained in [11 12 El J, wherein three very similar pac--

man geometries under the same loading are treated. By changing the roof of the pac-

man's mouth slightly. K switches from on to off to on again. Here in some sense rd is .-

d.*,.,

going from some finite value, to zero, to some finite value. Hence at some point in this

sequence, no K-controlled annulus exists. And further examples can also be constructed.

Thus the question arises as to whether or not this approach is sufficiently reliable to be

useful in practice: again the answer rests with the physical evidence.

Turning to the physical evidence, perhaps the most basic question is to what extent is

the critical value of K, the fracture toughness, a material constant In particular, to what

degree is the plane strain fracture toughness, Kic a material constant, since this is probably

the most carefully governed by standards in measurement of all parameters in fracture A

mechanics today. A review for two materials which possibly have had the most extensive

Copy appended for convenience
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r-. testing in this regard of all steel and aluminum alloys, respectively, is given in [13]' A ,..

summary of the results is contained in Table 1 (bars indicate mean values, A indicates 95%

confidence limit, ar is yield stress, K plane stress fracture toughness). In sum, K is

about five times more variable than the yield stress and accordingly quite dubious as a

material property.

Table 1. Critical value of K as a material property

Property ranges

Material Auy AKi AKY cc :::-:

7075 T6 Al +11% 0y +81% KIc +55% K -
Ic- - C

4340 Steel +9% y +50% K
Ic

A second basic question in terms of physical evidence is how well can K be used to %

predict fracture in the simplest of situations. Focusing on geometrically similar

configurations subject to a change of scale alone - arguably the most fundamental of tests

of predictive capability - an extensive, if not comprehensive, survey of all the pertinent

data is furnished in [14] " [15]. The answer found is summarized in Fig 1 This

figure shows the percentage of times LEFM is within 10% of predicting fracture - useful

agreement - and the percentage of times it is within 5% - good agreement These

percentages are shown as a function of scaling with the number of independent tests

involved for each class of scale factors given in parentheses. When scaling is small (2-3)

there is really little to predict even so K fails to furnish useful predictions over 70% of

coDy appended for convenience
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80 % within±15% of
LEFM

70k
70 - - -- % within ±10% of

LEFM

60

% 50 *4

40 I'
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I0
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Fig. 1. Predictive capability of K f or changes of scale alone.
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the time. When scaling is moderate (3-4), K fails to furnish useful results over 80% of

the time, while when it is significant (>4) it fares somewhat worse until eventually there are

no instances of satisfactory performance. And good predictive capability is even more

rare. This perf ormance in such carefully controlled laboratory situations could perhaps have

been expected given the outcome of the earlier question concerning Kc as a material

constant, but is nonetheless most unsatisfactory.
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6" CONCLUDING REMARKS

Fracture mechanics today typically is successful in identifying and quantifying

singularities, prerequisites to a useful technology. The present interpretation of the

resulting quantified singularity, however, is not good enough. More precisely, the choice of

the stress intensity factor as the parameter governing brittle fracture under monotonic

loading, while appealing in its simplicity, is not up to handling the complex phenomena _"

involved. There is a serious and immediate need to improve our technology here.

Further investigations are warranted regarding the performance of fracture mechanics

in the fatigue or cyclic life arena Given the unsatisfactory performance of fracture

mechanics in the simpler monotonic loading instance, there would seem to be little reason

for optimism here. Probably significantly different alternatives will need to be developed

for both monotonic and cyclic loading before engineering can be provided with an adequate

technology.
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On the Singularities In Reissner's Theory O: /2
for the lending of Elastic Plates -D(

w. S. Marto@' &d G. 3. SI edsr,

Wedge-shaped elastic plates under bending, with the edgesr
forming the wedge vertex being either stress-free, clamped or fMg ,.
simply supported, are characterized as to possible singular
behavior within the context ofRea0ner'splate theoy=0

Istroductiou
Probably the first singularity analysis of an angular elastic

plate under bending is William's treatment using the clAsical --

theory 11]. In the classical theory it is possible to satisfy stress-
free conditions at an edge solely in an approximate way, since .
only two boundary conditions can be enforced and there are D .
three stress resultants. As the boundary conditions play an im- on R, w "
portant role in governing singular behavior at the vertex of mant re.w '
any comer in a plate it is to be expected that Reissner's theory defined
(21, which admits three, physically-natural, boundary condi- ez"a/ !201-?
tions on an edge, may offer an improved, albeit singular.
representation in these instances. This is the expectation that FW1 I eSImewind WPAWS t Sm Mte equation

possibly motivated other analysts (e.g., Wang 13)) to perform i.e.,
analyses of complete, individual, crack problems using
Reissnet's theory rather than the classical, and indeed more 8

physically sensible results are derived in these analyses. shaped elastic plate under bending within the context of - .
Specifically, for the crack-tip on the tensile face of the plate Reissner's theory. Next we establish suitable solution forms-
the same hydrostatic singular field ahead of the crack as oc- for the dominant asymptotic response near the wedge vertex I

curs in the extensional case of a cracked plate under tension is and set down conditions for the existence of these fields. The r F ..
found; this is in contrast to the classical bending theory in conditions basically involve the analysis of an eigenequation on f. He0 - .
which the principal stresses ahead of the crack differ in sign for each pair of edge conditions considered. The note con- coordinat ."

and magnitude. As a result it would seem reasonable to at- dudes by displaying these eigenequations and discussing the On ea -_,S

tempt the analogue of Williams' study for the classical theory eigenvalues satisfying them which give rise to singularities. tions are t,
II and explore the singularities in Reissner's plate theory for a combined
wider range of geometries than that investigated elsewhere and For luotlo.

for a full range of boundary conditions; this is the intent of the The plate has thickness A and occupies the open wedge folows: .

present note. region. R, Stress.

We begin by formulating a class of problems for a wedge- R= 1(r,0) 0<r<.m,-oa2<0<a/21(O<as2r), (I) Clamp ,

where (r,) are the polar coordinates of a point P in the wedge Simply
lDupmn'fll of Manikw Ialii.i efr,, Cw"Mt-Mdo UUnivesity. with respect to the origin, 0, at the wedge vertex, and a is the onV=-,/

Pttibuhi. PA tS213. "-'.m, ,.- 19. vertex angle ( i ). distin c/
Masmuomp tweed by ASMED (Fig, . distinct pro

9e6; IA rei vv July Is. tos. The plate is comprised of a homogeneous. isotropic, and apply on ea

220 1VoI. 53, MARCH 1986 Transactions of the ASME Journal of .

• .-', .--- "



BRIEF NOTES I

Table I Eigemeuatlons for Reissner's plate theory genserating
singular moment resultants

Edge Conditions Eigenequation Constants
Stress-free/stress-free sin%a - CIA? C, - (-)*sina

'IClamped/clamped uinka - C2 C2 - I./)h2 * msn

Stress-free/simply spotd sin2)a - , ,-sin2a
itClamped/simply supported sin2)a.a=CA C, -(- Il/a)sin2a

,'d Simply supported/simply coSXQ - C7 C, - (- )*Cosa
4'.ICsupported%

.0Note: k- 1.2 for symmetric or anti-symmetric loading. respectively, and x (3- w)/(I +4 P). A-.

ef
45linear elastic material having Young's modulus, E, and mnetric and anti-symmetric contributions. Thus, in effect, nine
W Poisson's ratio, op. For this plate the stress resultants and rota- problems are considered. Ensuring bounded displacements

hs tions of Reissner's plate theory, in the absence of surface concludes our formulation and limits the singular beha~ior
o- aditdwietifomltioofsthnstl not cmlti

loading, can be expressed in terms ofthe out or plane deflec- amtewhltisfrutonstentll c peet
tion, ae(r,9), and a single stress potential. 1&r,S). That is. suffices given our objective of characterizing possible singular

a, fields at the wedge vertex. We next consider the construction
- - of suitable sets of asymptotic solutions.

ilb 5 C)Singularity Analysis
M ~ 00-~ r *rO0 From the form of the relations in (2). observe that if-

* - IC. OQ'5 1). X'(' t ). as r-O on R. X~ a constant, then the
( .3w I aw W 82W~ shear resultants and rotations are 0(rt ), while the moment

- ,a 7-- r---r--+-iOF resultants are 0(r11-). Accordingly we seek to construct
-D 2w P aw V 02W separable solutions for w, X satisfying the governing equations

.4f,, 2-9)- (3) which furnish six independent constants multiplying these
891 aF Br .2 : / dominant contributions as r-0. thereby providing a means of

satisfying the six boundary conditions contained in any pair of
1 &2 Ox(2) the edge conditions (4). To this end, and noting that X -X

Mo -f 802 rr and DV 2w are harmonic functions and the interrelations in
(3), we therefore take as our asymptotic solution forms for X

1=0D--(+~) and w, the bihaionic unction

2-y' OX I aw .
Dol-) Or 7 -9-' as r-O on R,where

2-v 1Ox w F~t*) -(bcosQ,+ 00 + b2sin~s-i+l06
D( )r 89 *r *bscosQ.\- l)#+b,$sinQX - 1)0),

on R, where V, Vv, the shear resultants, Alt, M, Ma, the MO- G(o,.)=(bsginQo4 1)0+ bacos~s-- 00)9'
%'. ment resultants and 00, 0,, the rotations, are functions of r, 9, .%.

defined in the usual manner, with -h 2 /iO1. D-Eh'/-bsn- )+yloss ))D
~ 2 12(1 - P3). the last being the flexural rigidity. Then the field The stress and moment resultants and the rotations in (2) may

equations of Reissner's theory are reduced to the Cauchy- then be written as
"aRiemann equations for the function$ %-.yV2 X and DV~w. V,-i. r 0Q+ ~ -2). , (A~ - + l)i tF+ 0(r-*2),

text of r~Y x ~ -- D ~) ~r'2,'-(~
-:.frs(3) M'('rAJy(F'Qs -(+ X- )-D( -P))O'1+0(r* ),

- (-'r 2 ~ -(DV 2 w), 2___
~~~~tex~~' + a aD.r~ ~ I)F G'40r.) (6)-Ids.The r+0r

equa*tionl on R. Here V 2 is the L.aplacian operator in cylindrical Polar . '-

snthe n coneachted e 2-yi.0
$snthe n coordinaes, e face three homogeneous boundary condi- 19, D.)F- P

,arittes. tions are to be satisfied. These three boundary conditions are
combined in sets of edge conditions to model various edges as aspect0ton 0.weetepimsdnt ifeetain t

V ~~follows:mecto9
Cis~ wedge With this set of separable functions for w and X the

Stress-free Al.# - Me, -0, V@ - 0. singularity analysis proceeds in a manner similar to that

,). (a, ' ~~~~~~~~~~~~~Dempsey and Sinclair 151 for logarithmic singularities. Impos- ri~~ -- 4 eeoe yWlim 4 o oe iglrte n y,, ,!

the wedge Simply supported MO -0,00. WOO0, ing the displacement regularity requirements on (6) and con-
a a is the on 0' */u2 (Os r<ft). These three cases combine to give six

distinct problems for the wedge. When the same conditions =Nr ha am cano m solution 121 ad have a tia~wic,en
.,ropic, and apply on each face, it is possible to distinguish between gym- mamiber of id~mu consants availabse for ahe aympmKc auaa~va .

*AW ASME Journal of Applied Meachanics MARCH 1986, Vol. 531221
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BRIEF NOTES ,

fining attention to singular solutions, the resulting conditions for the first three cases in Table I by Williams 141 and are char
may be summarized by decomposed in effect into symmetric and anti-symmetric pas fec
N - 0(rl -1) for real X satisfying D -0, 0 <X < 1, by Kalandiia 161, thus accounting for the first five cases. The the

roots for the last case, simply supported/simply supported, am
sin(elnr) can be determined by inspection. Some of the eigenvalues

1) for complex X + iif given in [4, 61 are actually the real parts of complex solutions; E41ficos(VIr) however, no truly comprehensive search for complex roots ap-

pears to be available in the literature. Such a parameter study . u ,
satisfying D -, 0 < AReX < 1, (7) is outside the scope of the present work. Nonetheless, for any dir .,

given application the determination of complex eigenvalues t io ,
proceeds routinely on separating the pertinent eigenequation a -M-0(i-k- 11mr) for real A satisfying for the specific ct-value into real and imaginary parts and solv- __ - i

d-OD ing the resulting, simple, simultaneous pair of transcendental
,0., m<n, 0< k< I, equations. Likewise, logarithmic singularities have not beenexhaustively searched for, but are straight forward to check

sin(sinr) for in any specific instance. w ,

M=0( -'mrf -or complex X = +in In conclusion we remark that the correspondence between z _
cos(rtlnr) the singular fields in Reissner's theory and those in extensional

plate theory is not restricted merely to the singular eigen-
tr-OD values, but carries over to the actual eigenfunctions which 2

satisfying =, m < n, 0 < ReX s 1, share the same r and 0 dependences, as can be deduced from a
the solution (6) and its counterpart in Williams [41. E,

as r-O on R, where M = (M@, t, M, is the vector of mo- Refnceol
ment resultants. In (7), D is the determinant of the coefficient I Williams, M. L.. "Surface Stress Singularities Resuing From Various tit
m atrix stem m ilg from the substitution o f (6) into a set o f ed ge llo vnsj Coof ~i .S An INAMW Co r es of Ap l ifi Ud e Blii. " Pr9 -1.pp

conditions drawn from (4) and n is the order of this matrix, m 35-329 ,A* . I.m
its rank. For any particular combination of the edge condi- 2 ReisI,.. E.. "The E 'ec of Tramr, I Sha Defrmio on itt. .e-din
tions (4) for a wedge angle a, the values of X in the ranges of Elastic Plats." ASME Joua AL os ArtuD hMacuArncs, Vol. 12,1 945. pp.
given in (7) may be regarded as the singular etsenvalues of the A-9A77. y

3 Waneg, N-M,, "Effects of Plate Tic-knes on the Se"nn of an Elastic' - '''

eigenequation, D = O. We now investigate the eigenequations lMe Contanng a Circ." ,curna/of tet msd Phs,. Vol. 47, 1968.
eullins from such expansions. pr 37-)Xo b -4 Wil:kurns. M. L.. "-Stress Singulanitses Resulting from Variou Boundary .""'

J [tnL~quIJ(JOOSCondmloi.. :n Angular' Cornes of Plates in Extsion.," ASME JOviL. .L or Ar,-

,tiID MICK&MICs. Vol 19. 1952, pp. 526-528.
5 Dempsey. J P.. and Sinclair, G. B.. -O tbe Stress Singularities in the

For the particular problem of the symmetric bending of a e o ,o w.." , Emev. Vol.9, t9 I
stress-free/stress-free wedge, substituting (6) with Pl. o mi)9l

b, - b, = b, - 0 therein into the first of (4) and expanding the 6 Kajandit., A. L.. "'Remarks on the Singularity of Elastic Solutions Near f
determinant of the resulting 3 x 3 coefficient matrix leads to Co.eTn," Prt t ed MEUtAd A MAhmie, Vol. 33, 199. pp. 232-135.

sin(X+ l)a/2(ksina + sin)a) -0(0< a s 2r). (8) %

Equation (8) factors into two equations; however, the first of '
these, while not generating a completely trivial solution, does 

%

not give rise to any moment resultants and therefore con- Dynamic Blehlvior of Beam Structures 2.
tributes no singular fields. Consequently, it may be discarded Carrying Moving Maasi
leaving as our eigenequation for this case only the second fac-
tor. The eigenequations for the remaining combinations of the S- SWIgI'
edge conditions each possess similar, non-singular, ItUdectioi -
multiplicative factors. in Table 1, we suppress these and list
only those parts of each eilgenequation that have attendant The dynamic response of structures carrying moving masses A'
singular fields, is a problem of widespread practical significance. A detailed , .

Comparison of the first three cases in Table I with the cor. survey of research efforts in this field was given by Stanisic: et
responding extensional cases given in Williams 141 shows the a. 121. The original problem is nonlinear in both local and N
eigenequations to be identical. Examining the fourth and fifth convective derivatives 131 and is complicated by the presence
cases in Table I and noting that the conditions for the simply of a Dirac-Delt% function as a coefficient in the differential
supported edge in (4) are the same as anti-symmetry re- equation of motion. Previous methods [21 applied for the
quirements, we see these eigenequations are equivalent to the solution of this problem are approximate in nature and
anti-symmetric pans of the first and second eilgenequations, tedious in their hierarchy of mathematical operation. Recent-
respectively, for a wedge of angle 2a. It follows that these two ly, Staniic (31 expressed the solution in terms of eigenfunc-
cases are also effectively contained in Williams' extensional tions satisfying the boundary, initial and transient conditions,
analysis 14). Finally, taking as the physical analogue of the for a heavy mass moving over a simply supported beam.
simply supported/simply supported edge condition, the exten- However, in engineering practice there are problems that in-
sional anti-symmetry conditions, u, - 0, og = 0 where u, is the volve more complex boundary conditions and, therefore, it is
radial displacement and o, is the tangential normal stress, we of phenomenological interest to look into the physics of the
find that the last case too has a corresponding extensional dynamical behavior of a clamped and a cantilever beam under ,i

eigenequation. The significance of this correspondence is that the action of heavy moving masses. The present study extends
discussions in the literature on the extensional eigenequations Stanisit's theory 131 to study the dynamic behavior of a

are directly applicable to elastic wedges generated by -'.'.-

R bending theory. s1chool of Aeronautics and Astonaucs. Purdue Univitty. Weil
Solutions for the dominant singular real pan of X are given Lafay ,. Indiana 47w. Stude ,t Mmnsur. ASME.

2221 Vol. 53, MARCH 1986 Transactiona of the ASME .-
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PATH INDEPENDENT INTEGRALS FOR COMPUTING
STRESS INTENSITY FACTORS AT SHARP NOTCHES

IN ELASTIC PLATES

G. B SINCLAIR. M OKAJIMA AND J H GRIFFIN

Department of Mechanical Engineering and the Center for the Joining of Materials, Carnegie-Mellon University,
Pittsburgh. Pennsylvania. U.S.A.

SUMMARY

A set of path independent integrals is constructed for the calculation of the generalized stress intensity
factors occurring in elastic plates having sharp re-entrant corners or notches with stress-free faces and
subjected to Mode 1, 11 or IIl type loading. The Mode I integral is then demonstrated to enjoy a reasonable
degree of numerical path independence in a finite element analysis of a test problem having an exact
solution. Finally, this integral is used on the same problem in conjunction with a regularizing, finite
element, procedure or superposition method. The results indicate that sufficiently accurate estimates of
these stress intensity factors for engineering purposes can be achieved with little computational effort.

INTRODUCTION

In a number of engineering structures, sharp re-entrant comners or notches are introduced,
usually to facilitate fabrication. At the vertices of these notches, stress concentrations arise
making them likely sites for fatigue crack initiation and therefore the potential sources of
ultimate failure. Elastic analyses of such configurations result in stress singularities (see, e.g., :
References I and 2). While these singularities are physically unrealistic in themselves, it is
possible that, with a sufficiently accurate determination of their nature and participation, an
extension of the now accepted notion of a stress intensity factor K might prove of value.
Although such a generalization lacks the thermodynamic argument in terms of energy release
rates that underlies the physical significance of K for cracks, it could lead to an improvement
over present practice in initiation calculations for notches. One current approach to such
calculations is to assume that a crack has actually formed at the notch tip, then compute the
usual stress intensity factor variation under cyclic loading, AK, and compare it with material
threshold values to see if crack growth commences: with a generalized K for the notch itself,
the AK could be computed directly and compared with an accompanying set of experimental
threshold values for the notch. In this way, increased life could be detected in circumstances
in which load levels are too low for the formation of a crack at the notch tip. The intent of
this investigation is to contribute to the analytical component of such a technology by developing
an efficient computational procedure for accurately assessing generalized stress intensity factors
at stress-free notches in elastic plates, one which is readily applicable to the wide range of
complex configurations encountered in practice.

The basis of our approach to meet the foregoing objective lies in the development of a set
of path independent integrals which pick off the K at notches. Such path independent integrals
for singular elasticity problems probably owe their origin to Eshelby's work 3 in the early 1950s,
and a number of different forms for these integrals have evolved over the intervening years

0029-5981 /84/060999-OSOl .00 Received May 1982
@ 1984 by John Wiley & Sons, Ltd. Revised 20 March 1983
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(e.g. Sanders* integral; 4 see also Freund' and the references contained therein). All of the
foregoing integrals apply to a crack. Recently Stern and Soni 6 developed an integral for a
right-angle corner under fixed-free conditions; here we follow the ideas in Reference 6 and
construct a set of like integrals, termed H integrals, for a stress-free notch in an elastic plate.

The computational advantage of path independent integrals in the analysis of singular
elasticity problems stems from the fact that the only numerical errors accrued in their calculation F51

derive from the numerical approximations being used-there is no additional source of errors
such as that due to the truncation of an eigenfunction expansion as in local fitting methods. It
is to be expected therefore that, when used in conjunction with a finite element method which
recognizes and handles the singularity present or some equivalent numerical approach, a
procedure results which is easily adapted to varying configurations yet which yields the necessary
resolution for practical purposes in return for a modest computational effort. Such is indeed - -

demonstrated to be the case in the second section of the paper, wherein the numerical path
independence of an H integral drawn from the previous section is examined, following which "*"- ,
the same integral is used in conjunction with the regularizing procedure of Sinclair and Mullan."
The paper then closes with some remarks on other applications and extensions.

CONSTRUCTION OF THE PATH INDEPENDENT INTEGRALS

Here we first focus on the in-plane symmetric loading of a notch in an elastic plate and develop
a path independent integral for the stress intensity factors in this class of problems. We then
discuss other integrals for anti-symmetric and out-of-plane configurations.

To formulate our initial class of symmetric, in-plane, notch problems we consider a plane
finite wedge subtending an angle 2a at its vertex (r/2 <a < ir), let (x,, x 2) be rectangular
cartesian co-ordinates having origin at the wedge vertex, the x,-axis bisecting the angle there,
and take R to be the open region defined by that part of the wedge in the upper half-plane, . -

with R being its boundary (Figure 1). To facilitate further the formulation and subsequent

X2.

Figure 1. Geometry and co-ordints for the region R

2.- .- %-

*...- .
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analysis. we introduce companion cylindrical polar co-ordinates (r, 0) related to (xi, x2) by the
transformations, "" "

x, f=rcos0 x2 =rsin 0 (Or <cc, -,r< 0 ) (1)

Then, in general. we seek the stresses or, and displacements u, (i,j= 1,2) throughout R as
functions of x, x, satisfying the following. The two-dimensional stress equations of equilibrium ,.
in the absence of body forces,t

0,, =o on R (2)

The stress-displacement relations for a homogeneous and isotropic. linear elastic plate.

, :[((3- c)/(w - 1))5,,U 5 + U,,+ u,,] on R (3)

wherein , is the shear modulus, K equals 3-4t, for plane strain and (3-t,)/(1+ ,,) for plane
stress t, being Poisson's ratio, and 6,, is the Kronecker delta. The stress-free conditions on the
notch face,

o,.= 0 on aR when XI/X2-cot C (4)

where n, are the components of the unit outward normal to RR. The symmetry requirements
ahead of the notch tip.

47120 u 2 =0 onrRwhenx 2=0 (5)

The boundary conditions prescribing the tractions or displacements on the remainder of 8R,

a',fn,f= s? ona ,R u, - u? on a2R (6)

wherein s,, u, are the applied tractions and displacements and atR, a 2R are complementary
subsets of i)R excluding the intervals in (4), (5). And finally the regularity requirements at the
notch-tip which insist that the displacements are bounded there,

u,0() onRasr-O (7)

Specifically we seek to extract from the stress and displacement fields meeting these require-
ments the generalized stress intensity factor present defined by

K, - lim V(21r)x'0 2  onx 2 0 (8)

Here the subscript I denotes the opening symmetric mode, Mode 1, and A is the singular
eigenvalue characterizing the only singular stress field possible at the re-entrant corner as
identified after Williams.2 t That is, A is the root of the transcendental eigenequation,

sin 2Aain-A sin 2& (0< A <1) (9)

with an associated eigenfunction having stresses and displacements in the neighbourhood of
the notch tip behaving in accordance with

o,,= O(rA-1) u,-O(r') onRasr-'0 (10)

1 Although the lower case subscripts only range over the integers (1,2), the usual index notation conventions apply:
repeated subscripts imply summation and a subscript preceded by a comma indicates partial differentiation with ,,..

respect to the corresponding cartesian co-ordinate. -p.'
I See Gregor)' for a completeness argument for Williams' eigenfunctions.

1' ... o
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rFigure 2. H, integral paths

To construct a path independent integral for computing KI we proceed as follows. In general,

path independent integrals can be devised by invoking the divergence theorem of Gauss on

ensuring the divergence of the integrand is zero: in elasticity, this can be done in effect with
Betti's reciprocal theorem (refer, e.g., to Reference 9, p. 355) which, in a plane, can be stated "

.as
* -0 )

contou inun d
In (11), the integration is performed in a counter-clockwise sense around r which is any closed
contour in R, a*, u, are complementary fields satisfying the same field equations as cr, u,, -

namely (2), (3), n, are now the components of the unit outward normal to F, and ds is an
infinitesimal line segment of r. Next we choose r as the contour comprised of any path I
which emanates on the lower notch flank and terminates on the upper, a circular path of radius

r from the upper flank to the lower, and two closing straight paths along the flanks (Figure

2). On letting the radius of the inner circular arc shrink to zero it is clear that only those parts

of the integrand which behave like 0(0/r) as r-.0 can contribute to this portion of the integral"

in (11). In order that such contributions stem from the singular K, fields alone we therefore .¢

require that
*, -O(r--) 0 =O(r') onRasr--0 (12)

Then (10), (12) imply that the product of the K, terms with the complementary field in (11)

has the desired l/r behaviour while all other fields in cr, u, contribute terms o(1/r) as r-0.

by virtue of the fact that the K, singularity is the dominant one present. Unfortunately, under

this limiting procedure the possibility of divergent integrals along the flanks arises because of

the potential of I/r terms there. Fortunately, if A is an eigenvalue satisfying (9) so is -A, so

that the complementary fields can be further required to be eigenfunctions themselves, thereby

rendering both c,,n, and ar~n, zero on the flanks and making the integrals there identically

zero. Under these conditions the integral around I equals the counter-clockwise integral around

00 the circular arc in the limit as r-. 0 which, with the selection of appropriate participation factor

-"-. .
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in the complementary eigenfunction, can be adjusted to recover K1. That is, we define H, by

and scale the complementary cigenfunction satisfying (2)-(5), (12) so that

H, = K,(14)
The actual forms for the complementary eigenfunction are most readily established in polar
co-ordinates and can be derived along the lines of Williams' analss yielding

c =-K~r-AI[(A +3) cos (A + 1)6-p cos (A - 1)0]

a,,=K r-A -'(A - 1) cos (A + 1)0-0 cos (A - 1)0]

a*,. -K 1*r-'AI(A + 1) sin (A + 1) 6-,6 sin (A - 1) 6) (15)

u? =[(A + K) cos (A + 1)0-0 cos (A - 1)0]
20AA

with
N/(8 7r) 1A(A sin2 a +sin A a) A2-
(I1+ o)(sin 2a +2a cos 2Aa) A cos 2a+cos 2Aa

r Before moving on to the application of the H, integral of (13), several remarks concerning
its use and some simple extensions are in order. First, because of the symmetry involved, it is
clear that H, can be computed as twice the integral around that part of I within R alone.
Second, (14) holds in the limit a - 7Y and the notch becomes a crack. Third, the pure traction
conditions on iR and the pure displacement conditions on a2R are solely for convenience in
the formulation and can be relaxed to accommodate admissible mixtures of traction and
displacement components. Fourth, extension to the antisymmetric Or Mode 11 case is straighitfor-
ward and leads to

H11 - K1, J (a',,u*'-ff*u, )n,ds (16)

where K1, is the Mode 11, stress intensity factor defined as the natural generalization to a notch
of the Mode 11 factor for a crack, the as,, u, components now fulfil antisymmetry requirements
instead of symmetry, i.e.

OL022in0 u1 -0 onARwhenX2-0 (17)

and, in polar co-ordinates, the antisymmetric complementary fields are given by:
a'?.= - Kl~rA'-'[,8sin (A - 1)0 -(A + 3) sin (A + 1)0]

a*". mK 11r A -I p sin (A -1)0--(A-1) sin (A + 1)0)

a*,*. =K JrAI cos (A -1)0-(A +1) cos (A +1)8] (18)
-- A

u:-- 2$'cO'c A- )-(A - )cos (A +1)0]
2psA
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with

' M/(8ir)MA(A sin' a-sin" A ) A2-1

(I +x)(sin2a-2acos2Aa) Acos2a-cos2Aa

where A is now the root of the antisymmetric eigenvalue equation, namely (9) with the minus
sign changed to plus. Fifth, for problems entailing a mixture of Modes I and 11, the fields necd ..-

to be separated into their respective symmetric and antisymmetric parts in accordance with -'..

,*4 -[u,(x, x2)r (-)'u, (x,, -x2 )/2 (19)

where u, and the stresses derived from substituting u7 into (3) constitute the symmetric part,
u,. etc., the antisymmetric, then treated individually using (13) and (16), respectively. Sixth
and last, extension to include the outstanding ouw-of-plane mode, Mode 1II, also proceeds
routinely and results in

Hill = KillJ (0'3,u* - 17,u 3 ) ds, (20)

where Kil is the generalized, Mode 111, stress intensity factor for a notch, the of3/, U3 components
are now the out-of-plane responses ( 1I, 2), and, in polar co-ordinates (x 3 - Z), the out-of-
plane complementary fields are:

-U2  (2 ). I 2 sin-
2.,) (27"-T)

Cos K,-- 2
%/(2r)r+W/2 "  2a 2a.

TEST PROBLEM

In this section a plane elastic notch problem having an exact solution is set up and analysed
using a finite element approach and the HI integral. The results found enable the numerical
path independence of the integral to be examined and its efficiency as a computational device
assessed.

For simplicity we fix attention on a problem drawn from the restricted class formulated in
the previous section. One means of setting up a problem within this class having an exact
solution is to superimpose symmetric eigenfunctions for a notch on some region R, and we
adopt this simple device here. In order to thoroughly evaluate the performance of the integral
when used with the simplest of finite elements, the constant-stress triangle. we select for
combination the first three eigenfunctions for the notch since these contain: the necessary
singular stress field; a stress field which, while continuous, is not continuously differentiable
and may therefore be regarded as just barely being a regular field for constant-stress elements;
and, lastly, a stress field which is relatively smooth and is continuously diflerentiable.t More
precisely, we consider a plate with a 90* re-entrant corner (a - 3v/4) and take R to be the
trapezium within the upper half-plate (Figure 3) defined by

SR X21,, )-X 2 < x, < a 0 < X < a) (22) %

O Dy a 'regular' field with respect to a gien element we mean one which does not impair the normal maximum %

convergence the element can enjoy; thus fields are regular for analysis using a constant-stress element it the stresses %. ,-

are continuous (ec Reference 10, Section 2.2. for a full discussion of the regularity requirements for vanous finite * ".
elements).

.... ... ... .... ... ... ...
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Figure 3. Geometry for the test problem, coarse grid and integratiom paths.

On this region we are to place the first three symmetric eigenfunctions for the 90* notch.
admissible in the sense of (7), and associated with the first three eigenvalues of (9) with
a - 3 r/4 there and having Re A >0. The forms for superposition are therefore those of (5)
with K * therein being replaced by the constants K,, C 2, C3 and A being exchanged for -A

then set equal to the three corresponding eigenvalues, As, A2 , A3, provided the real pans of
the expressions in (15) are taken in the event of a complex eigenvalue. In the interests of 4
brevity we suppress details of these fields here and merely list the required eigenvalues
determined numerically from (9):

A - 0.544 A2 - 1.629+ i 0.231 A3 - 2.972+ i 0.374 (23)

The corresponding eigenfunctions satisfy the two-dimensional field equations of elasticity (2),
(3). the stress-free boundary conditions on the upper notch face (4), and the symmetry *

-4 conditions ahead of the crack (5). In combining them we first adjust the participation of the
AI-fields so that

K,/o°%(2v)a' - ' -1 (24)

Here K, is the generalized stress intensity factor defined in (8) and cr° equals all for A, at
.. , - a. z2 0. Then, to complete our test problem, we add together all three eigenfunctions
with the A2-, A3-fields having participation factors C., C 3 such that they share the same l, I
magnitude at X, -a, X2-0 as the A,-field (namely 0o) and take, as the boundary conditions
on the remainder of aR (XI a, 0 < Xz < a; - a < x, < a, x2 - a), the tractions that result there
from their superposition. In this manner all three fields contribute to a comparable degree to

A the test problem.
The application of a constant-stress triangle, finite element code and the calculation of the p q

* . H, integral for this test problem proceeds routinely. Since the issue of interest is the computa-
tional performance of the integral, we discretize R uniformly with a set of 45" sosceles triangles.

"* To examine convergence we employ a sequence of three grids-a coarse, a medium and a ..
" fine-with the medium and fine grids being formed from the coarse by successively halving
*', the element sides. The coarse grid has 48 elements and 35 nodes (Figure 3), the medium 192 .4

elements and 117 nodes, and the fine 768 elements and 425 nodes. To examine path inde-
pendence we use three contours Y. (n - 1,2, 3) which have nodes common to all three grids

4. 
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(Figure 3) and along these contours use the mid-point rule to evaluate the integral in (13)-a
quadrature rule of like accuracy to that of the finite element discretization. The results so
found are presented in the first half of Table I. .,

.- -.

Table 1. Numerical values of the dimensionless stress intensity factor for the test problem (exact value 1)

Direct calculation using (13) Calculation using regularizing - ,
on three integration paths procedure (25) on three paths

Grid 7, 12 . 1 12 1 -

Coarse 1.044 0.843 0.883 0.979 0.975 0.978
Medium 0.913 0.939 0.940 0.992 0.994 0.994
Fine 0.972 0.973 0-972 0998 0.998 0.999

Of course the problem at hand is singular and accordingly results from the foregoing direct
treatment can be expected to be poor; needed is an approach which recognizes the singularity
present and takes it into account if better results are to be realized. One procedure with this
attribute is described by Sinclair and Mullan' and belongs to a class of auperposition methods
which, in essence, treat the singular part of any problem analytically with scant regard for
boundary conditions remote from the singularity source, then use a simple numerical method
to complete the satisfaction of the boundary conditions in what is now a regular problem.
What basically distinguishes the procedure in Reference 7 from other superposition methods
is the use of path independent integrals to balance the analytical and numerical contributions
and it thus seems natural to apply it here. The end result so far as the stress intensity factor
is concerned is (see Reference 7 for details of the surrounding argument) 5

K3 -b A,/A;ils (25)

wherein R, is the numerical estimate of H, for the problem of interest, R1 the numerical
estimate of Hj for an associated singular problem formed by taking corresponding boundary
conditions on OR as prescribed in effect by the singular eigeniunction alone with a participation
factor of unity. What (25) says, in effect, is not that either A, or /4 represent accurate estimates
of HI or Hl, respectively, but rather that they constitute roughly equally crude estimates with
the errors cancelling in large part. Central to this cancellation is the use of an underlying --

method for calculating K, which has predictable errors due solely to the discretization--hence
the need for the path independent integrals in (25).t

Application of (25) to the test problem is straightforward: the Ri values that have already
been computed are simply divided by the numerical values of H, found on the same grid and
path for the singular problem in which the boundary conditions on OR are established by the
placing of the A,-fields alone on R with a dimensionless participation factor of unity, i.e. as -
in (24). The results so found are presented in the second half of Table I

The numbers in Table I illustrate the degree to which the H, integral is numerically path
independenL The variation between the different paths is of the order of 20 per cent for the
direct coarse analysis and converges to approximately 0.1 per cent for the fine grid; the variation I __

between paths is yet smaller for the regularizing procedure (25) with the differences being
actually less than 0.5 per cent for the coarse grid, 0.04 per cent for the fine. Moreover these

t See Reference 7 for a fuller dicusmion ef the advantages ef paIth iPdpedet ntelh ralveti to mch, osuh as
local collomtion in this regard.
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results are the worst experienced in a number of numerical experiments since the *ins of the
participation factors here are such that errors accrue rather than compensate. Accordingly it
would appear that the choice of integration path is not a major concern in applying the H,
integral, especially when doing so in conjunction with the regularizing procedure. The numbers Z>'
in Table I also indicate the sort of convergence to be expected with H, integral. To illustrate
this more clearly we model the errors for each analysis with

e = eohc (26)

wahere e is the absolute percentage error in the dimensionless stress intensity factor for a
dimensionless grid size of h: e0 is thus the error for unit grid size and reflects the initial accuracy
of an analysis, while the constant c gauges its rate of convergence. We fit (26) to the medium
and fine grid results in Table I since we expect that c is more likely to have converged to a
constant itself for these grids. To check (26) as an error model we then use it to predict the
errors for the coarse grid; with the exception of the direct calculation of H, on 11 these
predictions agree well with the actual errors supporting the use of (26). The results of applying
it can be summarized by the average values determined. For the direct calculations,

eo -13(%M c-1-1 (27)

For the regularizing procedure results,

o- 3 (%) c-2-1 (28)

Equations (27), (28) show that for this test problem the regularizing procedure not only leads
to markedly better convergence as expected, but in addition is about a factor of four more

d accurate. Further, the regularizing procedure was observed to enjoy a similar superiority over
direct computation in other test problems and the sort of relative improved performance
demonstrated in (27), (28) is characteristic of that obtained in earlier applications of the
procedure to crack problems (refer to Reference 7 wherein average values of eo and c are 42
per cent and 0-15 for a direct calculation using the J integral, in contrast to 8 per cent and
1-4 for the procedure). It would thus seem that the use of the path independent integrals
developed here, together with a regularizing procedure as in (25), offers an attractive and
efficient computational approach for singular elastic notch problems.

CONCLUDING REMARKS

The path independent integrals described furnish engineers with a useful tool for determining
generalized stress intensity factors in elastic notch problems. This is especially so when used
with a regularizing procedure such as that of Reference 7; then accurate results can readily
be obtained using any standard, constant-stress, finite element code. Improved usage over that
demonstrated here can be brought about by introducing mesh refinement with the grid gradation
being tuned to the complete problem in the instance of a direct calculation, and to the residual -

regular problem when employing the procedure in Reference 7.
Extension of these integrals to treat problems involving loaded notch flanks is elementary

via superposition when such loads are constant but otherwise awkward. Extension to composite
configurations is possible at the expense of some algebra and is being undertaken at this time;
extension to anisotropic notch problems is possible in principle but does require significant
algebra. Extension to three-dimensional geometries in which the notch tip traces out a
sufficiently smooth curve is also possible in the light of Aksentian's analysis" which shows the
singular character in such instances to be that of the two-dimensional problem. However, for

1. 4
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geometries that are more significantly three-dimensional, such as the intersection of a notch
with a free surface, the integrals given here would not be appropriate and the development
of suitable new integrals would appear to represent a considerable analytical task.
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A REMARK ON THE DETERMINATION OF MODE I AND MODE 1I STRESS INTENSITY ..

FACTORS FOR SHARP RE-ENTRANT CORNERS 1. 0

G.E. Sinclair
Department of NechzanioaZ Engineering, Carnegie-Mel Zon Lnivereity
Pittsburgh, PenneyiZvania 165213 VSA
tel: (412) 678-2604 A J7

, •The independent development In Carpenter [1] and Sinclair, Okajima,
* and Griffin [21 of path independent integrals for the stress intensity
* factors at sharp re-entrant corners provides fracture mechanics with a

useful analytical tool. Prompted by Carpenter's recent sequel [3] to (1].
in which he extends his earlier work so as to be able to individually %
determine mode I and 1I factors, the purpose of this note is to point out
that such a capability Is already available in the integrals of (2). This
attribute mtay well be obscured in [2] by the overstatement there that
mixed mode problems "need" to be split into their symmetric and anti-
symmetric parts prior to applying the corresponding path Independent In-
tegral. While this Is certainly one approach for distinguishing between
mode I and mode 1I. It is by no means necessary. Simply applying the .

integral for mode I In [2] to a mixed problem yields the mode I Intensity
and vice versa. This Is basically because the complementary fields In e.,
the mode I integral are symetric so that when they are multiplied by any '
antisymmetric fields, Including the singular mode II field, then inte- *..,

grated, no contribution results. The converse holds true for the mode II

Integral. In detail the argument is as follows. """

Consider an elastic plate with a re-entrant corner, or sharp notch,
which has stress-free flanks (Fig. 1). Let x , x be rectangular

cartesian coordinates aligned such that the ntgatve x -axis bisects the

opening angle at the corner into two angles of m- . For this
geometry we can define the respective stress intensity factors for mode 1.
mode 11 by

Lim /(2v) x a K-m (2 1)x a
" 1 2-111 22()o+

on z O. In(1). its the normal compogent In the x2 -direction of
the itress field 0 , j - 1, 2), while ,  are the singular algen-
values steinng frM their corresponding eigenequations,

sin 2+ - sin 2m, sin 21-0 a I-sin 22 (2)

with 0 <  ,  - < 1. The elastic fields associated with and - are,
respecqively, symmetric and antisymetric about the x,-afis. That Is, If
a.4 are the stress and displacement components fo A with 0it uI "

bling those for A',
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S (x iJ a + ()i + + - - + (3)ijl 2 - Jtxl x2) ui(xx 2) -) ui(Xl, x2) 2 2.2

and

oij(X _ x2) . _ (_)i+_
,j 1 2 o1 (xl" x2), ut(x1 , - 12) () I u(x 1 , 2)

r- r

(4)
Now from 12) we have, as our path independent integrals for determining
the stress intensity factors for these singular fiela6,

H1 -f (aj U I  a Oj u )nds (5)

and

H -r (o u - u )n ds (6)
11 ij i: i i

Here, I is any contour within the plate commencing on the lover notch
flank and terminating on the upper; n are components of the unit outward
normal to Z and do is an infinitesimal element of its length; &he 4nte-
gration is to be performed in a counterclockwise sense; and o, ut are
the stresses and,4isppcements of the symetric complementary iingular
eigenfunction, a , u those of the antisymetric (see Appendix for
details). The rtdlipation factors of these last are adjusted in [2]
so that they pick off the corresponding stress intensity factor, i.e.,

ft..- K. H K.(7)
S1 'IHI III

Turning to their application in mixed mode problems which have both
symmetric and antisysmetric singular fields present, we first focus on
the use of H established for any problem's elatic fields in [2], the
general contiur I can be exchanged for the here more convenient path t
(Fig. 1). Applying H of (5) on r, then changing variables so that seg-
ments in the lover half-plane (x v 0) are expressed in terms of those in
the upper, we have 2

H 1( 61_ ) _x _)u*(6, x2)' ,,.%
fI - !(allXl x2)u(; 1 , x2) + oil(X1  2 1, - 2))0

-(Oil(1, x2)u,(x1 , x2) + Oil(Xl, -z2)ut(;. ,  2

*Although the loer case subscripts only range over the Integers (1, 2) the

usual summAtion .convention for repeated subscripts still applies over this
reduced range.
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+ (a 1 xl' X 2o)U (x 2) - ai2(x. - 2)u I (x - x2)),

x 1. 
*.

- (1 2 x 1 , 2 ) u ( x l ' a;2 ) - t ( x - x ' -'X' 1 2.d.

Now introducing into (8) the antisymmetry relations satisfied by the anti-
symmetric parts of a , u, namely the equivalent of (4), in conjunction
with the symmetry reiltiofil sa&isfied by the symmetric complementary
singular eigenfunctions a , u ., viz., the equivalent of (3), we see that
all the combinations in pPentieses () cancel. It follows that the only
nontrivial contributions to H must come from the symmetric parts of o, ...
u . Further, as proven in [21. only the singuiar part of these symnetic,
fields actually contributes, recovering the first of (7). Analogously,
H11 may be shown to pick off only KI in mixed mode problems.

Thus for general problems containing a mixture of symmetric and anti-
symmetric fields, in addition to the strategy of separating the given
problem into its symmetric and antisymmetric constitVents if it occupies
a region geometrically symetrical about the x1-axis , one can simply ...
apply the H and H integrals directly on the path of choice to discern
K% and K.i Iespectively. Either technique provides reliable estimates of
tie stre§ intensity factors when implemented numerically, and either can
be made quite computationally efficient when used together with a super-
position procedure or regularizing approach such as 14].
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APPENDIX

Here for completeness we furnish details of the complenentary singu-
lar eigenfunctions required in the definitions of H and H in (5), (6).
These fields are most readily expressed in cylindrilal poll 1 coordinates
r, 9 (Fig. 1). For the I integral we then-have

ar - r l(A + 3)cos( +) - cos(A - 1)0]

0% K*r- -[(A - l)cos(X + l)e - 0 cos(C - 1)0]

a -K r- [(A + )sin(A + 1)9 - 0 sin(X - 1)@]re

*Such a strategy offers computational savings with finite element analysis

of about a factor of four in terms of operational counts and around a fac-
tor of two in storage requirements. See [2], Eqn. (10) at seq. for specifics
of the decomposition.
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U . [(X + .)cos(1 + 1)e - B cos(X - 1)e]
* K~r_ * -.. ."

K ru K [(A - K)sin(X + 1)0 - B sin( - 1)6]

K * .(8)UjPI sin 2 a + sin I )
(1 + K)(sin 2% + 2a cos 2a)

in vhich

21

- 1, " 1 coo 2a + cos 2) o

and wherein z is the shear modulus, and K - 3 - 4v for plane strain and
(3 - v)1 + v) for plane stress, v being Poisson's ratio. For the
integral we have

a -K r0[B sin(A - 1)0 - (X + 3)sin() + 1)e]

a K r 1 to sin(A - 1)6 -(A - 1)sin(A + 1)6]
ee- _ _ ..-1.

o K r - B cos(1 - 1)0 -(1 + 1)cos(X + 1)0]

Ur M,(2B-A [o sin(A - 1)8 -(X + K)sinl) + 1)01

* /**r ), 1(;us. to) [ oS( - 1)e -1)k - K)CoD(), + 1)8],'O -

K I1 + 0)(sin 2a - 2* €o- 2Xa)

In which now
121

AA ~ coos2*- cos 21

Like fields for the made III Integral 9 (-NIX) can be found in (21. _

6
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CORRI GENDUM1-0

Correction: "A Remark on the Determination of Mode I and Mode 11 Stress
Intensity Factors for Sharp Re-Entrant Corners," G.E. Sinclair, Inter-
nationaZ J7ozonal of Fracture 27 (1985) R81-R85.

Equations (5) and (6) on pg R82 should read:

B ./ *i a~ * U u)n ds (5)

H I I (0~ a:* *ul) n ds (6)

The paragraph following Eqn. (7) on pg R82 should read:
Turning to their application in mixed mode problems which have both sym-
metric and antisymmetric singular fields present, we first focus on the
use of H to determine K in such cases. In view of the path indepen-
dence Of established ior any problem's elastic fields In [21, the
general coAtour I can be exchanged for the here more convenient path r
(Fig. 1) ....

Equation (8) Is split and occurs on the bottom of pg R82 and the top of
pg R83. The arguments for the last displacement field occurring on pg
R83 should read:

u I(x 1 -X 2)

We regret any Inconvenience crested for our readers by these typographical ..

errors - Ed.

12 .7uly 1985
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Some inherently unreliable practices in present day fracture
mechanics
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Abstract

* A number of current practices in fracture mechanics which use quantities near a crack tip to make conclusions
about response at the crack tip itself are examined. Specificall) these include: stress and displacement matching
to estimate stress mntensit) factors, monitoring local stress and strain values to predict fracture, and both crack
opening angle and crack opening displacement as fracture criteria B) means of a pair of counter applications, all

% of these procedures are demonstrated to have the potential of leading to completely incorrect conclusions. An
understanding of what causes this inadequate performance then indicates that such procedures may be unreliable
in general and prompts suggestions as to alternatives.

1. Introduction
In fracture mechanics today there are a number of procedures which in essence draw on

field quantities in the vicinity of a crack tip to infer what is happening right at the crack *

tip. This paper considers two classes of such procedures: local fitting methods for .,
determining stress intensity factors, and local fracture criteria for predicting fracture. The P

intent is to examine the reliability of these approaches.
Local fitting methods for calculating stress intensity factors at cracks arose out of a

need to extract this parameter from numerical analyses, particularly finite element
analyses. One of the first discussions as to how best to undertake such exercises is that of
Chan et a). [I], though certainly the approach was in use prior to [1] even if somewhat
informally. Moreover the approach, together with spin offs such as the nodal force
technique of Raju and Newman 121, continues to be used today in conjunction with both
finite element and numerical integral equations analyses, as is evident in several papers in
recent conferences 13,4]. All of these methods entail matching near but not at the crack tip
to estimate the stress intensity factor there; the question cons;'ered here is how reliably
can the attendant extrapolations be carried out.

Local fracture criteria attempt to predict fracture by checking some quantity in the
vicinity of the crack tip. Among the more natural choices of quantity to this end are
measures reflecting stresses and strains at the crack tip. Stresses are usually used in elastic
analyses and typically in complex configurations (e.g. for failure in composites as in
Chamis [5], and for biomedical applications as in Valliappan et al. [6J). " Strains are

'p.

There do exist though, vamples of the diret use of local sresses in elastoplastic treatments. sta for instance
Mauer e it al. -.

.
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normally preferred when significant plastic flow accompanies fracture (e.g Newman [8].
Belie and Reddy [9]. Kim and Hsu [10]). Other quantities employed in this role are the
crack opening displacement of Wells []I] and the crack opening angle of Andersson [12].
the former having gained sufficient acceptance to merit a British Standard [13] to govern .%
its measurement. * All of these criteria involve comparisons made away from the crack tip
% ith a 'ie% to gauging what is happening there, the issue of concern here is the certainty
%ith which such comparisons are connected to fracture at the crack tip. ,_,-

We begin our assessment in Section 2 by specifying the local fitting methods and local
fracture criteria for testing/calibrating and thereafter using on simple elastic problems in
Section 3. The conceptual applications in Section 3 in fact have known solutions, thereb"
furnishing demonstrations of local procedure performance. These sample evaluations in
turn motivate a discussion of the more general use of local procedures and some
suggestions as to alternatives in Section 4. The paper then ends with some concluding
remarks.

2. Procedures examined

Here we first define a stress intensity factor and describe two local fitting procedures
aimed at estimating it - one using stress, the other displacement. We then specify some
local fracture criteria which are based on stress. strain, crack opening angle, and crack
opening displacement.

To fix ideas consider a cracked elastic plate which is thick in the out-of-plane direction
so that a state of plane strain obtains (Fig. 1). For the in-plane directions, we let (x. v) be
rectangular cartesian coordinates having origin 0 at the crack tip and x-axis aligned with
the crack. To further assist the development, we also let (r, e) be cylindrical polar
coordinates, sharing the same origin, and related to the rectangular coordinates by

x-rcos9. y-rsin . (1)

for 0 4 r < 2c. - w < < ir. Next we assume the plate to be under symmetric loading
having resultant force per unit thickness. P, acting transverse to the crack. Then the only
stress intensity factor present is the mode I factor K t, defined by

K",- lim 2V'rr'cU(o#) on 0-0. (2)

where a# is the elastic normal stress in the $-direction and U is the unit step function. here
taken as being one for positive arguments and zero otherwise.

We now wish to draw on local quantities to form estimates of the stress intensity factor.
K,. One straightforward stress estimate is suggested by definition (2) itself and merely sets

U- on 9-0, (3)

wherein r0 is some "small" distance from the crack tip and the bar atop a, distinguishes it
as being whatever value is found by the numerical solution technique adopted. An
analogous displacement estimate is

K-Il,., V-)u( ',.,,) on 0-r. (4)

Here. is the shear modulus. , Poisson's ratio, and -ri on 9 - v the numerically-de-

Crack opening displacement was also independentl% introduced by Cottrell 1141 to the effect a somewhat
different objective. that of classifying brittle versus ductile fracture - ee Burdekin 115] for a mcet r.0eA of its
role in fracture mechanics.

7• .
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Figure 1. Mode I crack configuration and coordinates.

termined opening displacement of the upper crack flank. Again in (4). for simplicity, we
select r - re as our -small" distance, a policy we continue throughout the remainder of
this discussion without loss of generality. The estimates in (3). (4) both fit the first singular
eigenfunction for a symmetrically excited crack to the entire crack fields at a station
supposedly close enough to ensure that these singular fields dominate. Thus while (3). (4)
do not represent the most sophisticated of local fitting procedures for finding K1. they do
contain the essence of the rationalization for all such approaches. Consequently they are
adequate for demonstration purposes here; subsequently we review other. more complex.
local fitting methods.

We now turn to fracture criteria based on local quantities. For a stress criterion we
choose perhaps the most obvious, namely that the tensile stress ahead of the crack. near
but not at the crack tip, attain a critical value for fracture. That is, " .'

on 0-0. (5)

for fracture, wherein a'(> 0) is the critical stress determined on a suitable calibration l-- lwproblem. An analogous strain criterion exists. Instead, with a view to examining a greater
variety of local fracture criteria, we consider the more involved condition of Newman 18].
In Newman 18]. the crack-tip strain measure is assembled from a finite-element analysis. ',-..-
The result, denoted 1, here, is the average of the element strains in the y-direction. c,. ,
taken over all the elements connected to the node at the crack tip. Accordingly for fracture

%W:.;,,..~ a . ~ - .. 'j -.p~~jw ~ '4'4 ..&".'4 "
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we have (Fig. 2)

3 -", 1Y (6)

where o (> 0) is a calibrated critical strain and r, - r2  F5 r./3. r3 Vr 0/3, 01 cot '2.
02 -tan - '2. , -3r/4. The sample finite element grid of Fig. 2 also suffices for

computing the crack opening angle. a. of Andersson (12]. this being the angle subtended
by the closest node to the crack tip. The associated fracture criterion has that, at fracture.

a-a,. a-2tan-'( -ue!,.,,/ro) on O-r, (7)

with a,(> 0) being a calibrated critical angle. A similar evaluation of the crack opening
displacement. 8. of Wells [11), leads to the fracture criterion that has. at fracture.

8-8. 8- -2uo,,o on 9-7, (8)

8( > 0) being a calibrated critical displacement. Actually 8 is usually evaluated as the
crack opening displacement at r,= r w, 2 /2iro?, where ,.. is the uniaxial yield stress:
here we take o,. to be such that this station too coincides with r- ro . Equation (8) ...

completes our specification of the set of fracture procedures based on local quantities to
be appraised next.

\ / Finite Elemaet Grid\

_ ~'. .

-- Deforwed Crock Profile L

Figuft 2. Finite teme rd and othei fatues ear the ack tip.

3. Test/calbrtin prblem: applicatons

In this section we start by formulating a test/calibration problem and a pair of problems
to serve as "applications". Then we exhibit the closed form solutions to all three problems.
employ the first of these to test the local fitting methods and calibrate the local fracture
criteria, and thereafter use the last of the solutions to assess performance.

The problems to be treated are drawn from the class of symmetric, plane strain, crack
problems outlined in the previous section. We do this conveniently by confining attention , -..

to the cracked circular plate of radius A (Fig. 3) and hence, by virtue of symmetry, need I -
only to consider the semicircular region 9, defined by

D,, ((r. )1O <rc R.O <90< r). (9)

Throughout this region we seek, in general, the stresses e,. as. -, and displacements u,, u"
as suitably smooth functions of r, 0 meeting the following requirements. All three
problems are to satisfy: the plane-strain stress equations of equilibrium in the absence of

- a -. -S-. _
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Figure 3. Cracked plate geometry for test problem and applications.

body forces. namely
MI., + TW +0,,- 0, -0 (.10

a#.# + rT,,., + 2,, - 0.

on ,. where subscripts preceeded by a comma denote differentiation with respect to that
variable: the plane-strain stress-displacement relations for a linear elastic, homogeneous e
and isotropic, plate with shear modulus p and Poisson's ratio v - 1/4. vi.."

Or M[3",, + r-'(,,+ ue0,1] i:
a# =,[3r-'(u, + u#.#) + ,,, ,].()"''"

on 9.; the stress-free crack flank conditions which set
a# -*r,# - 0 on 9-i, (12)

for 0 < r R; and the symmetry conditions ahead of the crack which have
No -O, r,-O on 0-0. (13)

- for 0 < r < R. In addition each problem individually must comply with its applied stress
conditions on the circular boundary. These set %7.

Ppr
-. ,- " an cosT on r-R, 

" , n-O.a 0.... .ms ~(14)'.-"
P no

T b sn--- on r- R. (14)

for 0 < 0 < w(P > 0), where, for the test problem.

k-, a-S, a3. -1, bl-b 3 -1 (15)

are the only a. -0 0, b. -0 0. and. for the two applications, all nontrivial constants are given
", in Table 1, wherein p -A/r 0 (> ).

While not strictly needed in the mathematical formulation of the foregoing type of
elasticity problem. we adjoin the following regularity requirements on the displacements in

% %%%

-o o

... .
/. ." - " -. .-- .".-.-.. -. - ':'2""':,: ,- - - ' :" ---"9 .- . .? --.-, '.-.i --,--- - '. -' - . '/ ,: ""
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Table 1. BoundAr. condition constants for the applications

Constant Application I Application 2

8a, (p - 2 + v2 )2/63p2 B( o - 1)2

o,. a, - 7.374.036p /2  
- 5.969.792pi 2  % .a 0 N " -

a,. h, 0 156 0.9l8p'
1, 10(9- 4 / )p'/49 - I - lOp,

a, 2(100+ 4 )p/7 0
h.-A. 0 47.012.754p'a. 3(a3 - all/'7) - 3P2(10 +.,9p:2 ./_

,. - 0 10.008.616p5 2
, u. ,.A -A , -So. 0 .-

; - all ,. -sil 9( 11 , la " 67;": ..

-1  0 1
b., 3a, 1 - 30p.

, -3a'a, 3p 2 + a,12

all three problems to emphasize their physical admissibility: that the displacements at the
crack tip be bounded, that is

u,-O(1). u.-O(1) as r--o (16)

on -4. where 0 is the large order symbol: and that the crack opening displacement be
nowhere negative. i.e..

-u,; O on - r. (17)

for 0 < r < R.
We postpone for the moment a discussion of how the test problem and two applica-

tions were arrived at together with their solutions and merel) exhibit the latter at this
point. For all three problems the complete solutions admit to representation by finite .". ,,
sums of eigenfunctions for the crack, viz.,

a,-- c.rx'- b / 2 (6- n) cos(n-2)! +(n+l-)2)cos(n+2)
kv - ... 2 ''

o=- CR r." n+2)1cos( n- 2) -1 + -"2)€os(1,,+2) .

-';7V 2, 2

VrR oi ..... "" "

P 17

k.- . 2.,

P9

Al-

x f.Crt"/-'1:(4-n) cos(. -2) + (n+l-)'2) cos(n +2)!""-
-.2.... IL %

SX E --r( (n + 4) sinln - 2)! -(n +1- 12) sin(n + 2)!i¢. 2- . ...
i ~ ~on R. For each problem respectively. the solutions have k as previously ((15). Table 1) :

A- %

..

,7 .- '-4-
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Table 2. Coefficients in the solutions for the applications

Coefficient Application I Application 2

ci 0 l
2c, -1.943.509 -1.492.448 ", -

'412 0 7.845.459
r109 - 4 V12)/49 -10
S,, -. 0 1.251.077

*'t",  -2(10+ 2 )/7 0

a, ,, 9011. - 6v )/49 9

while the only nontrivial coefficients in the above are: for the test problem,

c- 1; (19)

and for the two applications, those c, ,6 0 in Table 2.
The solutions in (18). (19). Table 2 may be verified directly. Substituting the forms in

(18) into (10). (11) establishes that the field equations are complied with, and inspection of
(18) shows that the crack flank and symmetry conditions (12), (13) are met. Evaluating q,, - -

.r, of (18) on r - R. using (19), Table 2, further shows that the boundary conditions (14),
(15). Table I are fulfilled. Finally, checking the displacements in (18) under (19) or Table -
2 reveals that the regularity requirements (16), (17) are satisfied.

In applying the local fracture procedures to the three problems we begin by assuming
that their numerical treatments have been refined to the extent that the exact answers are
recovered to all intensive purposes. i.e. # - ot, etc. This is the ultimate of situations from
an analysis point of view and allows us to focus on whatever errors are introduced by the
procedures alone.

Invoking this assumption we next test our local fitting methods before applying them, a . 4

precaution commonly undertaken in practice. Using the local fits for the stress intensity
factor in (3), (4) with P - 1/4 on (18) when (19) holds yields, for both methods,

4: P 7(20)

For comparison, taking the defining limit of (2) in (18), (19) gives

K, =4 P L~w(21)

Hence the local fitting values of K, are exact and the performance of the two methods (3),
(4) on the test problem is perfect.

In order to calibrate our local fracture criteria we need to determine the load to fracture
in our standardizing problem. We do this by regarding fracture as occurring when the
stress intensity factor takes on a limiting value of K , the fracture toughness for the plate.
It follows from (21) that the critical load in the calibration problem, Pr, is

74 "(22)

Thus increasing P to P, and evaluting the stress in (5), the strain measure of (6)'. the

For this derivation we ote that trailhtforward manipulation leads to r-

-"' .-. 1(2- n-(-)'2)cos(e -2)! +(-2) cos(n--6)

a as the normal strain in the ydirtction to be calculated at the set of points in (6) et seq.. and threafter avera ged
to produce d,.

%

•." . . . - . ""-"9. """" ', . . . . . . , , ,""" .-. ,,,.." .'.',, . ,",. .+.'.".: '. .+.".•.','.".'.-.'.-.-, ' .,.+,-," ." '.
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crack opening angle (COA) of (7). and the crack opening displacement (COD) of (8).
using (18). (19) gives, respectively. V

4P, Xe ,

4P~k' K~k' 

kp roR PM2 'rro
(23)

6P 3K,3
a- 2 tan -  __ -2tan -  __ -'a,

pk~roR 2gtj2rr 0

2 2Pe. 3 K""#L" ' R+ r:T:'::- a

wherein , has been set to 1/4 and k'- 0.303,299. -'.
With our local fitting methods tested and local fracture criterion calibrated we can

apply them to the two applications. Introducing (18), together with the coefficients of
Table 2, into (3). (4). (5), (6). (7) and (8) with P - 1/4 and when P - P,. of (22). with k
therein now taking on the respective values in Table 1, furnishes the results displayed in
Table 3. As opposed to normal engineering practice, we can also determine the corre-
sponding exact answers for the stress intensity factors in our "applications" from (2). (18)., .

and Table 2. and thereby check the values of K, when P - P. These last results are also
included in Table 3.

Table 3. Comparison of procedure outcomes with actual results

Acuiity Application I Apphcation 2

K, determiuation

Stress fit K, 0

Sam fit

Exam answer K,0" ..-.0 :

fracture prediction

Local stain 1, - cc 1,-0
COA 8, 0-0
COD 8-8, 1-0
Exact anwer P - P, .k -0 P - P, K, -K,

Several comments on the results in Table 3 are in order. For the first application, the
stress intensity factor in reality is zero irrespective of load level P so that the stress right at
the crack tip is also always zero and fracture there is not a possibility (at least not prior to
fracture elsewhere): the local fitting procedures on the other hand estimate Kj as being "
dependent on P and consequently, when this load is sufficiently large (P - Pc in fact). all V
the local fracture criteria predict fracture at the crack tip. Hence the procedures consid-
ered give rise to conservative but gross errors in Application 1. For the second applcation. "4. - . "

the stress intensity factor is not zero and increases linearly with load so that there is
indeed a load level at which fracture occurs: the local fitting procedures in contrast give
no K, whatover, independent of the value of P, and companion predictions of no
fracture for any load. Hence the procedures give rise to nonconservative gross errors in
Application 2. In all the results in Table 3 represent a clear demonstration of the potential '.%. .

I.v'.

;. :. +, .. ..;' +. .. / .- +. .-. -. .,- ., > -. ..-. .- .. . .. ,- - - .-'-. .. ... + -. .. .. ., .. . " ,. .& ".. +, .+ = . .. ..-. ... ... .
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unrealiability of the fracture procedures of Section 2 - we look for means of controlling
such unreliability next.

..:.? +

4.~~' Som°.teratve

Here we start by examining the nature of the breakdown of the two local fitting methods
used to estimate K1. In the light of this appraisal we reiew other local fitting methods and
advance suggestions for improved methods of extracting stress intensity factors. Finally
we discuss what remedial action can be taken for the local fracture criteria.

The reasons underlying the failure of the K, estimation via local fitting in the preceding
section are as follows. First, the fit must be made away from the crack tip with r0 , 0.
since the stresses can be singular and thus not fittable at r0 - 0 w+hile the displacements p.

are zero there leaving nothing to fit. Second and as a consequence, other eigenfunctions
for the crack that are not being fitted can participate causing incorrect answers. Indeed
this is the effect that the applications in Section 3 were constructed to produce. That is, -
symmetric eigenfunctions for the crack other than the singular one being fitted were added
so as to generate the erroneous K, estimates of Table 3, then whatever stresses the
combination so devised realized on the circular boundary were taken as the prescribed
stresses there.

At first glance it might appear a simple matter to design a local fitting method which ', -
does not succomb to such contrivances. Perhaps the simplest candidate stategy to this end t -4
is to move the point fitted closer to the crack tip; such an approach however fails if ro in
the counter applications is then adjusted to coincide with the new point (which it can be).
A more sophisticated possibility is the procedure in which v2vra* on 9 - 0 is plotted as a
function of r, a straight line fitted to the data, then the line extrapolated to r - 0 to
estimate K1. This type of extrapolation technique in effect matches the first and third
eigenfunctions for the crack and would appear to enjoy some popularity in present day j .
practice. There are a number of ways in which the details of this and like extrapolation
methods may be implemented with varying results, but typically such an approach does
meet with more success on the given applications than that reported in Table 3. In fact. on
knowing the answers, it is possible to adjust the technique to recover the correct results
exactly. For such a fine tuned method though, it is then possible to devise a further new
application on which it does not work by superimposing even more eigenfunctions. By
way of illustration of this sort of more extensive counter ;pplication, consider Fig. 4. "" In
Fig. 4, v2w- o,/ on 0 - 0 is given as a function of r/R on a set of 17 points; here K is a
nondimensionalizing, but otherwise arbitrary, constant. A least squares, straight line
through these data points passes through the origin, yielding A1" -0. In actuality. K - K.
illustrating the unrealiability of this approach. Further, gathering more data on 1/9 C r/R .-

4 1 and matching does not improve the incorrect estimate of K,. Furthermore. similarly
erroneous results can occur when using the displacement counterpart - indeed, there is a Nel

counter application which has exactly the same data as that depicted in Fig. 4 but with
"' "ro#/K on 9- 0" there exchanged for "-w/2r pu#/K(1- ,) on - ", thus .'-

producing A, - 0 despite the fact that K, - K. tAnd this is the situation that prevails in
general. That is, irrespective of how apparently refined a local fitting method is and what
it fits, once its specifics have been decided on it is then always possible to generate an
example on which it proves to be comprehensively inadequate. The reason for this is that

SIn this poc the t bo of a - 1/4 i limply mnde to facilitate the emstncuo and not of any uaignficance
m itacl f ,. . - ,

S Sincir [16 1 for d&Is of is exule.
SaM 116) for deuls of that wesondrumple and othe. V'.

:::

.. *".,.., .
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Figure 4. Product of sru ahead of the crack times the square-root of distance from the crack in a more
extesve Counta applcation.

any local fitting procedure must match a finite number of quantities on a finite set of
points and thereby can only fit a finite number of eigenfunctions; thus any local fitting
procedure leaves an infinity of eigenfunctions unfitted whose participation factors can be
adjusted to ensure its downfall.

A key question that arises at this point therefore is who has the final say. the analyst
making adjustments to his local fitting method so that it does produce good results or the
rascal generating the problems on which the given method does not work. Unfortunately
in practice the latter always has the option of going last. This is because in practice we .
must ultimately stop checking our procedure on test problems and apply it. Then. since
applications are problems for which we do not know the answers, we cannot tell with ,,
certainty how well our procedure really works, and as a result we have to tolerate the
possibility of it giving erroneous estimates, maybe even grossly erroneous estimates.

Logically one only needs the possibility of such results in an application to establish
that a method is unreiabl,.. In practice, however, one can perhaps rationalize still using
the method if one can Yssign a sufficiently low probability to the occurrence of the
disastrous example - the counter application being pathological to a degree. Certainly the %

....... ....... ......
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counter applications provided in Section 3 do not appeal as physical problems. being
constructed more towards dramatically underscoring how much in error the selected local
fitting methods and fracture criteria could be. Even so, the two particular counter
applications are one of an infinity of pairs that could be devised to ensure that the -
methods in (3). (4) give the same completely incorrect estimates as in Table 3. Moreover
there are other such sets of pairs that give rise to estimates that are more subtly in error .". P
than those of Table 3 but are nonetheless significantly inaccurate And such is the case for
any local fitting method, no matter how apparently refined - one can alwa\1 construct an
indefinitely large number of applications on which it fails. It therefore appears unlikel\
that the probability of encountering a problem application in engineering can safel\ be
taken as being negligible.

More specifically in this regard, consider the following limited simulation of perfor-
mance for the simple stress-fitting method of (3) on two problems that could reasonably
be viewed as being of practical consequence. In accordance with normal practice, we begin
our simulation by testing our method. As a test problem we take the classical Gnffith
geometry of a center-cracked infinite plate and consider the case when the crack is opened
by a uniform far-field tension. Then we adjust r0 so as to ensure acceptable results which
here we take as being up to 5% in error. Picking to - a/14. a being the semi-crack length.
as a moderately close point at which to obtain accurate stress values by either numerical
or experimental methods, we find on assuming negligible errors in the stress determination
that

, "1.05 K1, (24)

wherein K, is the exact value. Equation (24) represents a satisfactory and encouraging
result. Now as an "application" we take the Griffith crack opened by a uniform pressure.
Applying (3) with ro - a/14 as before then yields

n0.67K,. (25)

Equation (25) represents an unsatisfactory nonconservative result, showing that the
probability of meeting a problem application in practice for this simple method is not
zero. .

Of course, as remarked earlier, it is possible to adapt ones local fitting method to
overcome the difficulty experienced in this last elementary example. However, while
increasing ones efforts considerably when applying local fitting procedures by performing
the matching in a variety of ways at a number of locations does tend to increase the
chances of detecting spurious results, it does not appear reasonable at this time to assume ....-.
that any such combination of techniques reduces the probability of unacceptably incorrect
results to a negligible level in all situations of practical interest. Continuing to use local
fitting methods to determine stress intensity factors in engineering would thus seem to be
unjustified and unwise. This is especially so since there are available quite different
approaches which are free from the potential of furnishing useless results that local fitting
methods have, and which can be implemented with no more effort.

One of the best of such alternative approaches employs path independent integrals,
since the integral operators involved are essentially orthogonal to all of the eigenfunctions Ii.
for the crack except the singular one. That is, contributions to these integral; from the
nonsingular eigenfunctions can be shown to be zero analytically **. so that these terms are

See Efus et W. 1171 for further discussion of the effects of the presm of stresses which are independent of P,
lke the additional hydrostatic presaure here. See also Sacilair and Mullin (191 for a further eample. concerning
the standard confiuruon of a msigle edge motch under tension. wherein ocAl fiting iethods have been
responsible for less than satisfactory nsults.

See e.&. 1191 pp 1002. 1003 for a proof.

." ..- ,, W
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in essence eliminated rather than merely hoped-to-be-small as they are to varying degrees
in local fitting methods. Two such integrals are the J integral of Eshelby [20]. Rice [21]
and Sanders' integral [221; both of these enjoy physical interpretation as the energy release
rate at the crack tip in the elastic instance. Other such integrals are those of Carpenter 123]
and of Sinclair et al. [19] these last lack the appeal of a direct physical interpretation but
can be expected to perform somewhat better numerically since they involve the calculation ,gs, _
of single terms rather than products. * In addition there are also methods, like that
developed by Parks [24]. which effectively employ a path independent integral and

consequently realize similar performance.
Turning to fracture criteria based on local stresses and strains, we find the situation is

not improved in terms of their likelihood of furnishing correct information. Again one can
conceive of more complex criteria than the simple stress criterion and the average strain
criterion specifically examined here; for example, the condition of Belie and Reddy [9]
which checks the maximum strain in all the elements near the crack tip to decide if
fracture occurs there. Again too one can construct counter applications on which such
approaches fail; for example, Application 2 actually has ,- 0 at each centroid of the
elements sharing the crack-tip node (Fig. 2), so that Belie and Reddy's criterion applied to
these elements would predict no fracture despite the fact that crack-tip fracture occurs in
this application when the load is sufficiently large. Simply put, these methods cannot %
reliably infer what the physical stresses and strains are near the crack tip given an
underlying theory which can lead to infinite stresses and strains at the crack tip in
response to infinitesimal loads. Good alternatives here await the development of stress
and strain fields for cracks whose physical relevance is unquestionable. In the meantime,
the mathematically singular stress and strain fields, while not a physical reality, are a
reality of analysis which must be faced. even in the elasto-plastic instance. 00 At this point
the accepted way of doing this, at least in the elastic situation, is by means of the
associated energy release rate, whence the stress intensity factor. Accordingly local
stress/strain fracture criteria must be interpreted as trying to estimate stress intensity
factors, whether wittingly or otherwise. It follows that such practices are every bit as
subject to the uncertainties of explicit estimation via local fitting methods discussed
previously, and we recommend that alternatives, such as those suggested earlier, be used in
their stead.

The last two local fracture criteria could both b4 regarded as using measures of the
loaded crack profile and thereby avoiding the singular stresses and strains to some extent.
Nonetheless their performance in the elastic regime is impaired by the same shortcoming
that all of the preceding local procedures have, that of not being able to reliably assign
what proportion of their totals are due to benign nonsingular eigenfunctions and accord-
ingly what part is not. As a result they cannot reliably estimate the accepted governing
parameter, the stress intensity factor. I Furthermore, being fits of a single parameter at a
single point in effect, they cannot even be readily supplemented to reduce the chances of
extraneous results. In the light of this inadequacy of both measures in treating elastic
response it would not appear reasonable to entertain with any great confidence their use
to treat fracture when significant plastic flow is present, the end to which they were
originally proposed. Especially since, physically, elastic response must precede plastic
irrespective of how much plastic flow ultimately accumulates. In the absence of a sure

* This has in reality been found to be the case in limited numerical experiments undertaken to date. refer 118.19]
See, for example. Hutclunson 1251 for an analysis demonstrating the persistence of ingular behavior within"'K" ".

the deformation theory of plasticity.
In passing we observe that. in view of the uncertainty in the elastic situation of COD's relationship to K,.

hence to J. attempts to find a truly general simple relation between A and J in elasto-plastic instances %ould ., ,
seem to be futile.

%...
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connection to a physically reasoned explanation of fracture then, these measures remain
inherently unreliable and others are to be preferred. The best of these at this time would
seem to be the stress intensity factor itself and the J integral, both of which at least have -
the attribute of being clearly related to the energy release rate in the special case of pure
elastic response.

S. Concluding remarks .yt.

Fracture mechanics today continues to be faced with the task of making physically
sensible interpretations of the nonphysical singular fields which exist at crack tips, be the .p,

situation purely elastic or elasto-plastic. A prerequisite to success therefore is an accurate
assessment of the degree to which these singular fields are present. The procedures
considered here - local fitting methods to estimate stress intensity factors and local.-
fracture criteria to predict fracture - fail to do this in a way which can be shown to be
reliable.

The basic reasons for the potential unreliability of the local procedures are as follows.
First, all the local procedures must consider quantities near but not at the crack tip.
Second. at such stations fields other than the key singular ones can contribute. Third. the
extent of such participation cannot be either completely controlled or fully accounted for.
As a consequence. for any given local procedure there exist problems on which it produces
unacceptably erroneous results. "-"

The question then arises as to how likely is one to come upon such problem problems _
in practice: the answer unfortunately is not obvious. For local procedures based on a ,, -

single parameter such as one point stress or displacement matching for K1. a critical stress
at a single station, COA, and COD. the likelihood would appear to be quite high. For
local procedures employing a multiplicity of quantities such as some of the more extensive
matching techniques to estimate stress intensity factors, the chances would seem to be
reduced. However, for the best of these approaches in this regard, the probability of
invalid results cannot be shown to be zero. Consequently in real applications wherein the
answers are not known, one cannot be sure that such procedures do in fact find them.
That is not to say that local procedures may not work on occasions, and even quite well, it
is just to say we cannot be certain they do. Accordingly local procedures must be viewed ." "
as being unreliable at this time.
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Resume

Ott examine diverses prtiUqueS courantes en Micanique dle Rupture qui font usage de grandeurs parametinques
au voisinage de l'extrifnute d'une fissure pour tirer des conclusions stir cc qut se passe a cette extrernite mime
Ces grandeurs 6ont notatrnent: let valeurs de la contrainte et du deplacement correspondant a un facteur
d'interisht de contrainie estime. r'enregIStresnent des conraintes et deplacements locaux en vue de predtre la
rupture. et I'angle et le deplacement d'ouverture d'une fissure en tant que criteres de rupture.

En constderant une Paste d'applications divergetes. on demonte que toutes ces procedures risquent 5
d'entrainer des conclusions completement incorrectes.

Une analyse des causes de ces inadequattons montre que ces proc~dures peuvesit se reveler peu fiables en w4
general, et conduit A des suggestions de proc~dures alternatives.
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FURTHER EXAMPLES OF THE
UNRELIABILITY OF STRESS INTENSITY

ESTIMATES FOUND VIA LOCAL FITTING

INTRODUCTION

The inherent unreliability of local fitting methods for determining stress intensity
i %.....

factors is established in 11. 2]. In [1, 2], examples of this shortcoming are limited

to very simple fitting procedures, although the general nature of source of the

" difficulty is discussed: the intent in this brief supplementary report is to furnish the

details of some more extensive demonstrations. We begin with a precise statement

of four chosen problems, then exhibit their complete closed-form solutions*. Using

these forms we next extract the exact values of the corresponding stress intensity

factors and compare the results with those obtained by fitting stresses and

displacements using several eigenfunctions. The report closes with a brief discussion

of some of the implications of the examples regarding even more involved local

fitting procedures.

FORMULATION OF PROBLEMS

The plane region of concern in all four problems is the cracked circular disk of

radius R a 9 (Fig. ). To describe this geometry, we take rectangular cartesian

coordinates (x, y) with origin at the crack-tip and x-axis aligned with the crack face,

together with cylindrical polar coordinates (r. 8) related to (x, y) by

x-rcos 6,yursin (O r<o,- < IT), (1)Sir).

Since excitation is restricted to that which is symmetric about the x-axis, we can

confine attention to the upper half of the disk, R, where

R - {(r, 9)j 0 < r < R, 0 < 8 < T)., (2)

We seek then, the stresses or, o 8 , 'r6' and displacements ur, u 9 , as sufficiently

smooth functions of r. 9 throughout R, satisfying the following requirements. The
stress equations of equilibrium in the absence of body forces,

%. %.

#n the interests of brevity, no information as to how these particular problems were constructed is given: in

* this regard, see E 1. 2] for the basic approactK

'-.

\3.. .
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'Da lare ____0_

8r r 8a& r -

(3)

r ae ar r

on R. The plain strain stress -displacement relations for a homogeneous and isotropic,

linear, elastic material with shear modulus p and Poission's ratio V,

2p au I a U. u
r~ ~ V_2 _V r ra

2p1lue U au
T-_V_(1V)(T iD T)r ar(4

au a-ue U9
19 ra C)0 ar r

on X. The stress-free crack-face conditions and the symmetry conditions ahead of the

crack,

U 0~u. T 0 when 6 - . (5)

for Ocr<R. The stress boundary conditions on the outer circular boundary which

* prescribe

K B ,(n-) '

a acs((2 )G)whenr

K (2n-1)8

)r bs2n( when r R, (6)

for 0<6<1r. where K is a constant (K>O) and a . b (n *0, 1 .... 8) are given in Table 1I5
for the respective problems (1-4). By way of illustration. Figs.2 display sketches of

these stress distributions for Problem 1 (Figs. 2a and 2b share the same scale). And

finally the regularity requirements which insist that the displacements be integrable at

* the crack tip and that there is no overlapping of the crack flanks,

. % Le
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Figure 2. Applied stresses for Problem 1: .---
A r 'ra 1K, B - T'rB I r-i K.'.
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U 60). u,= 0(0) as r40, (7).

for 0:50<7T, and

U8 :5 0 when 8 7T, (8)
J '.. ,

for O<r-R.

TABLE 1: BOUNDARY CONDITION CONSTANTS

Constant Problem 1 Problem 2 Problem 3 Problem 4

a0 (=b0 ) 420 420 14,700 -420

a -569 919 0 5067
a 2.815 14,215 217.219 14.250
a- 5.962 -43.222 1,387.200 -41,781 .

a3 -9.675 -121,275 -9.199,158 -121,275
as -20.115 97,065 9.782,400 97,065
a6 45.525 382.725 14,366,268 382,725
17(: - b?) -19.683 216,513 -30.093,120 216,513
as(- b8) 0 0 13,544.091 0

b -213 779 0 1,689
8.585 42.785 651,657 42,750

b3  -30.802 216,606 -6,936,000 215,661
b4  33,975 339,975 22.333,578 339,975
b 11.367 -837 -23,157,120 -837
b6  -42,525 -382,725 -9,441.144 -382,725

6 1

PROBLEM SOLUTIONS

"* For all four problems the complete solutions can be expressed as finite sums of

. eigenfunctions for the crack. Explicitly we have

K 6 cr n 5 1 r 3
r * fr [(- n) cos(n - 8 (n - .) cos(n 9].

K c rl 3 1 1 3 VA
E n " --- H( * -) cos(n - ) -(n -) cos(n + )8], "-.;8t177 c 2222

K 6 c r" 1 1 3
r8 "purubn - )[ sin(n -)8 - -in " )1 . (9)

f277 :n-;:'2 -
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___ n 4V~) cos(n + (n co~
r c2i2' £n1) 2 2- 2

| I'

K 6 c 7 1 1 3

- - N  n - 4) sin(n -) (n -- )sin(n -)6.
c(2n 1) 2 2 2 2

where c, c, (n=0,1....6) are constants having values for the respective problems as

given in Table 2. That (9) and Table 2 constitute the solutions to the four problems

" posed earlier can be verified directly. That is. the forms in (9) for each n

individually can be shown to satisfy the governing field equations (3). (4) by

substitution and the crack-face and symmetry conditions (5) by inspection, while the

combination realized on the boundary r-R-9 using the values in Table 2 can, after

., come manipualtion. be shown to comply with the prescribed stresses there (6), Table

1. In addition, inspection of (9) shows that the displacements are bounded ar r-0, i.e.

(7) is satisfied, and combining the forms in (9) using Table 2 gives positive crack-

,' opening displacements, viz., (8) is met.

TABLE 2: SOLUTION CONSTANTS

Constant Problem 1 Problem 2 Problem 3 Problem 4

c 1.890 1,890 595,350 -1,890

c 945 945 0 0
c -<1> -744 2.232 0 5,067
c€ 950 4,750 651,657 4,750

-230 1.610 -462,400 1,610
c 4  25 225 121,615 225
c5  -1 11 -13,760 11

5,5

. c, 0 0 563 0•

S6

STRESS INTENSITY FACTORS: EXACT AND ESTIMATED VALUES

Defining the Mode I stress intensity factor, K1, by

K, • or o' (10)

on R. we have from (9).

• --

P,% " -. ,%.. - • d I .• .-. %.% I . L ". *%
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2c 0 1)
K, K(- 2 ).

Thus from Table 2 we obtain the exact values of K recorded in Table 3 for each of

the problems. ~

As out local stress-f itting method we match the transverse stress, 0',9 on the line

of symmetry ahead of the crack (8-0) at the five radial stations ral, 3. 4, 7, 9. To

do this we take the five eigenfunctions for the crack given by (9) with n=O, 1, 3,2. 2,

5/2 therein". Then, in view of definition (10). we must solve the 5x5 system of

equations

K d *dr d 0~r12  d dr 2  d dr 5 /2 urff 7'0,8 . (12

r a1, 3, 5, 7, 9.

where Y)is our stress-fitting estimate of the stress intensity factor and dn (nel-4) are .%

estimated participation factors for the other eigenfuntions.

As our local displacement- fitting method we match the crack opening displacement,

-uon the crack flank {6=iT) at the five radial stations r al. 3. 5, 7, 9. To do this -
we take the five eigenfunctions for the crack given by (9) with n-D, 1, 2, 3, 4*

* Then it follows from (10) and the forms in (9) for n&O that we must treat the Sx5 *'

system

2 3 4 J~ 6(i d~r d dr d dr ~d r

(13)
r a 1,3, 5, 7,9,

where I(i is our displacement -f itt ing estimate of K, and dn (n a1-4) are estimated

* participation factors for the other eigenfunctions.

~The eigenfunction associated with me1/2 is not as given in (9) since a 00 on 6=77' when nal/2 in (9).
The isigent unction fot this gigenvatue requires individual analysis and eventually simply reduces to a equal to a
conistant as the only nonzero stress mn the piano. As a result 01 so on 89&D for this case so tJAt in effect

thi eienuntonis also being matched by our stress-fitting rc re

.e mere the actual eigent unction associated with n - 1/2 has u -0 en 13 7 and so contributes nothing
to a crack opening displacement fit (just as the corresponding striiss does not affect a stress fit). Further.
although (9) does give the correct eigenfurictions for m=312. 5/2. 7/2. 9/2. none of these terms add to u6 P
on 6.77' Hence in effect here we are fitting the first ton eigenfunctions.

.0iv
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We now apply our local stress fitting method to Problem 1. From Problem 1, from
(9). Table 2. we have

B, 6 2c

Sn.

248 r2  r3
=K[1 - i -r -(190 - 46r 5r2 *-J (14)

35 189 5

Hen:e system (12) becomes

K d, d2  d d K,
K, 3d, 34rd2  Sd3 + r 3K.

2 3 5~d (15
*56d, 5J'd2 - 25di3 + 5~ 4 5K, (5

SK, +7d, 7 7 d2 +49d3 . 49d 7K,

9S*d d 27d 2 *81d 3 + 243d 4  9K

Solving (15) yields K .m d 1 a K. d2 *d d4 30; the first of these is the estimate
entered in Table 3.

Similarly we apply our local displacement-fitting method to Problem 2. then our

stress-fitting and displacement-fitting methods in turn to Problems 3 and 4. The

resulting estimates are entered in Table 3.

"P. TABLE 3: STRESS INTENSITY VALUES, K1  2

Problem Basis of local Local fitting Actual exact
fitting method estimate of K value ofK

1 Stress 0 K

2 Displacement 0 K

3 Stress K 0

4 Displacement K 0

Tabl 3 how tht i ispossible to devise problems wich ensure the

comprehensive failure of the two local fitting methods put forward here.
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Several comments are in order at this point. Clearly, given knowledge of the exact

solution as here, it is possible to modify either of the two local fitting methods so ,.'

that they do work. In practice, however, one does not know the answer in an actual

application, so that one does not have the option of fixing up a local fitting

approach but can only see if things "look right". In this connection, consider the F

plot 2"ir a(00) for Problem 1, which as it happens coincides with -pu 6 (e 7 7T[)r2'r.

I 2(1 - V) for Problem 2 (Fig. 3): Certainly here things "look right". Indeed one could ,.,

even imagine obtaining results from a sequence of finite element grids at the points

3, 5, 7. 9, then at 2. 3, 4, 5, 6. , .8, 9. and ultimately at 3/2, 2, 512. 7/2, 4, 9/2, 5,

1112, 6. 13!2, 7. 15'2, 8, 17/2, 9. and still concluding K, = 0 when, in actuality, Ki

K. And it is possible to construct a problem which has both its stress fit and its

displacement fit do this. In sum, once any local fitting procedure has been tested

and decided upon, it is then possible to set up an "application" on which the

procedure gives completely incorrect results. Finally we remark that while these

given problems are not the easiest to solve without hindsight using other methods,

they are by no means impossible. In fact, using the superposition method of [3] in
conjunction with the path independent integrals of [4] we would judge that

reasonable results could be obtained in return for some computational effort. More *"

precisely, for Problem 1 for instance, we estimate from the participation of the ... ,-
*1.

regular eigenfunctions in Table 2 relative to that in trial problems in [4], that K, A.

could be found to within 10% using a uniform grid comprised of around 1000

constant-strain triangle elements, to within 1% using grids with up to 5000 such

elements and extrapolation. Moreover, these analyses could be performed in a

completely systematic way without drawing on a knowledge of the exact answer at

all.
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ON THE CAPRICIOUS NATURE OF ELASTIC SINGULARITIES

lo" *

AE Chambers and GB Sinclair

Department of Mechanical Engineering. Carnegie-Mellon University
Pittsburgh, PA 15213 ,

Classical elastic analysis of re-entrant corners or sharp notches in plates reveals the

presence of stress singularities at the notch vertices As a result, one must make

inferences concerning the structural integrity of components containing such features when

the stresses become infinite in response to infinitesimal loads, clearly not a simple task At

this time the accepted methodology, for the case of cracks in brittle materials anyway, is

to take the coefficient of the singularity - the stress intensity factor - as the parameter

governing failure. This choice represents the basic tenet of linear elastic fracture

mechanics today.

The usual approach taken in the elastic asymptotic Analysis of re-entrant corners is to

examine what stress fields, including singular fields. are possible for a given local geometry

*ere we adopt an inverse approach of prescribing a field with bounded but nontrivial

stresses at the vertex then asking what problem can such fields occur in In this way we

construct a closed form solution with f Mte stresses for a loaded plate in the shape of a

pac-man with a specific angle between its stress-free flanks. This configuration then has .

a stress concentration factor but no stress intensity factor. By maintaining the same

loading on the outer edges of the pac-mar yet perturbing the shape of th flanks about

their original positions, problems which have participating singularities are generated these

last do not readily admit to the determination of close form solutions but are Amenable to

numerical Analysis of demonstrably high resolution using appropriate path independent

integrals and a superposition procedure Since an identical loading acts in all problems and

only very minor changes in geometry occur, it is to be expected that the physirc-

responses would be quite similar. Thus the stress intensity factor's on-off-on-gain type

behavior makes it difficult to envisage how it could be the controlling damage parameter m

this sequence of problems These results. and other like them e.g., references). suggest

the need for a reconsideration of the role of the stress intensity factor in fractre

mechanics.

References
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THE ELASTIC ANALYSIS OF THREE RE-ENTRANT CORNERS ,

INTRODUCTION"-

V..°" °

Since many engineering structures are designed with what are known as re-entrant -.- '-

V.°

corners or notches (Figure 1), it is important to understand the mechanical behavior of " .'

these geometries upon loading. Elastic analysis of these notches can result in stress fields

near the notch tip that are singular in nature [1]. Physically, these singularities do not "-.'

make any sense. Unbounded stresses imply failure under even an infinitesimal load, which .'-.

is inconsistent with everyday experience. For analytical purposes, it is desirable to"-'%

determine the participation of these singular fields in comparison to the regular fields .

present'

These singular stress fields are eigenfunctions of the equilibrium problem posed upon 1

loading re-entrant configurations. In general, most regular eigenfunctions stresses acting

along the bisector of the re-entrant corner are equal to zero, leaving only the singular

fields to dictate the mechanical behavior of the notch (Figure 1). It is thesn stress fields

acting at h te notch tip that are analytically unbounded. I is also these stress fields tat

require making some sense of their significance in the problem under investigatio In

order to gain some understanding as to how the singularity plays a role in the overall .,,,

stress field, one could ask the question, is there a re-entrant geometry which has non-,-.-.

zero and finite stresses acting et te notch tip Such a configuration would have no

singularity participation, Le. a stress intensity factor of zero. The answer to this question is, ,,,

in fact yes. Upon finding re-entrant corner that has only regular stress fields, the

-. present-

objective of the present work is to track the variations of the stress intensity factor with

alight perturbations of geometry. A re-entrant corner under a particular loading that has a

stress intensity factor of zero yet nontrivial stresses t thi vertex will be determined. The

angle near the vertex of the corner will be decreased and then increased slightly The

raeecedi

-oUo°

orde to ain omeundestaningas t howthesinglariy pays rol intheoveral U

,-o-,,, ,*,•. ,. stes fel , ne could ask -. th qesi,. is thee.a.reentran geme .which has-..', non- .. . ... ,
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effects of these geometric changes will be studied through the behavior of the stress "

intensity factor.

The first section presents the formulation of the problem under investigation. The

exact geometries to be examined are introduced. The generalized stress intensity factor is \;"

defined. The second section presents the numerical analysis. A finite element approach is

taken to determine the stress and displacement fields. A path-independent integral is used

to calculate the stress intensity factor with the information produced from the finite .0

element analysis. Results will be presented and discussed in the final section

PROBLEM FORMULATION

In order to study the effects of a stress singularity of a re-entrant corner, three

individual regions are analyzed. The basic difference of the three regions is that the

material angle local to the notch tip is slightly perturbed from an initially symmetric.-.

geometry. The planar region R has material angle, 2a (i=0,1,2). In particular, a0 =

128.727 = 125.863 and a 2 = 131.863. The choice of these particular values will

be explained later. Let (x,yl be cartesian coordinates that have origin at the notch vertex,

and 'ie x-axis bisects the material angle there (Figure 2). Let (r.6) be polar coordinates in

the region where r2  x2 + y and 8 = arctan (y/x). The dimensions of the notch are as

follows: a = notch depth and h = half-height of notch.

The region, R is defined as the region enclosed by basically two boundaries. The

first boundary, a 1Ro. is the boundary to which the prescribed tractions will be applied. It

consists of three sides of a rectangle. The line segments that define it are:

y = ±h for -a<x< 2h and x = 2h for -hSygh (1)

The second boundary, a 2R0, to enclose the region, R0, is the two line segments given by

tana ±y/x for -(x. 12)

The region, RV, is defined in a similar manner. The local x,y) cceo-dinate system near ,=:"

the vertex of the corner is slightly rotated about the global coordinates by about Z = 3*.

The outer rectangular boundary, O lR1, on which the tractions are applied is left intact, as
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is the lower flank. The upper flank is rotated by approximately 26 and extended to y =

h/2, thus resulting in less solid material to support the applied loads in the original problem.

It is connected by a smooth curve to the point where the positive y-face boundary begins be%

in the second quadrant at y = h. This is boundary a 2 R1.,

The perturbation of the upper flank for Problem i = 2 is similar to that in the first

perturbed problem. However, the rotation of the local axes is in the opposite direction,

resulting in more solid material than both Problems i = 0 and 1. This is region R2. (The

dotted lines in Figure 2 represent the upper flanks for Problems i = 1 and 2.)

Formally, we seek the stresses, orr " and r and the displacements, u6 and u,

as funclions of r and 8 in the region R, satisfying the following. The stress field must

satisfy the two- dimensional stress equations of equilibrium in the region in the absence of -

body forces,

r+ - o + rr 60 0

ar roc)G9 r 4

6 + -- + = 0, (3)
r r ar r

on R. The stress-displacement relations for a homogeneous, isotropic, linear elastic plane

hold for the regions.

2prulu 1
rr au I ar

2p (1 u\+ (4)

ii..- (I*

r au +auO uO7 r9 =
rO rae3 ao r '

• , - " -
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on R, where p is the shear modulus, C1 equals 1-2v for plane strain and 1-v for plane

stress, C2 equals 1-v for plane strain and 1 for plane stress, and v is Poisson's ratio.

The notch flanks are stress-free which requires that

O0 0 r =0 on (2 R when ± a.. (5) %

2 ii

The remaining boundary conditions on aoR, are prescribed tractions derived from the

following stresses:

I rrJ• -I - ~
Orr -0 0  sin26 + - sin2 0 0

ao

=0 sin2 - sin200 (6)
88 a 0 .:... ,

7 = - cos20 - cos20 0 ] -

where '0 is arbitrary. Finally, the regularity requirements involve the fact that the
0'

displacements at the vertex of the notch must be finite,

u and u,9 = 0(0) on R. as r-O. (7)

More specifically, we want to use the stress and displacement fields found in the

problems (i = 0, 1 and 2) formulated above to find the generalized stress intensity factors ,.,

present There are two possible factors, one arising from any symmetric loading and one ...

arising from any antisymmetric loading in the problem. For the symmetric case, the stress

intensity factor is defined as:

K1 =_ fn, r 1-, on 6 0. (8)

The subscript I represents mode I loading (symmetric opening mode). The value of X is

the eigenvalue identified after Williams [1] that represents the only singular stress field

possible at the re-entrant corner under this symmetric mode. That is, X. is the root of the

eigen-condition

sin2A a =-Xsin2a. IN . .1). (9)
I I I I I .

For the anti-symmetric case, the stress intensity factor is defined as

. . . . . . , . "

",p ",j "J

°.,° ..
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Kt V + ,g r're on e=o, (10)

where the subscript II represents the mode II loading (antisymmetric). The eigenvalue X, is -,

evaluated from the antisymmetric eigen-condition,

sin2Xa = ), sin2a. (0<X,<1). 11), , I.. .-

4% These eigenvalues produce eigenfunctions which are the only singular stress fields possible

for the particular notch geometry. As a result of the problem formulation, the

displacement fields derived are regular. That is, the fields near the notch tip behave as

Gee and Tr =O(ri ) and u and u. = O(r i) on R as R--0. (12)

Some explanation of the traction boundary conditions found from (6) is now in order.

Recall, that the purpose of this study is to look at slight geometric perturbations of a

regular configuration. Therefore, R0 is taken to be the region in the nonsingular problem

under investigation The approach taken is such that a particular material angle, a0 is

sought that will produce a regular and non-zero stress field for an antisymmetric problem. -'-

The following transcendental equation results:

tan2a 0 = 2( (13)0 0

It is in solving this equation that a is found to be approximately 128.70 The remaining

two problems are then posed by simply changing the material angle by plus or minus about .S

three degrees. Note, also, there is now an exact solution for the nonsingular problem that

is independent of the radial coordinate, r. It is these regular stress fields that are used as

the traction conditions on the boundary a 1R (i=0,1,21.

-'S

In conclusion, what we have are three problems where the applied tractions and the

boundary on which they are applied remain the same. The flanks change in geometry, but

remain stress free. An easy way to imagine it all, is that the region R0 is an ideal

geometry of a re-entrant corner that is to be fabricated (i=0). The first singular case

examined (i= 1) is a result of machining just a little too much material away from the upper

flank. The second (i=2) follows from not machining quite enough material away from the

.V V'i' " - '" S " . .~ - - - . -.. -,
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.

flank. When the three configurations are loaded under the same conditions, what is the

result of these slight geometric changes?

ANALYSIS .

The analysis of the problems requires two major steps. First, the stress fields in R (i .,
'5'

= 0,1,2 ) need to be determined. Secondly, as stated in the problem formulation section, a

method is then needed to determine the stress intensity factor of each problem for both

mode I and mode II loadings.

A finite element method is used to numerically determine the resultant stress and

displacement fields of the three problems.* For each problem, three grids of different

sizes are used in the hopes of attaining better accuracy and gauging convergence. The

grid refinement is fairly systematic. The coarse grid for the nonsingular problem ( i0 ) is

shown in Figure 3. The nonsingular stress fields defined in (6) are applied on the

- rectangular boundary, leaving the notch flanks stress-free. Upon finite element analysis,

"" nodes along common e are of constant stress. (One drawback of the grid pattern chosen

is that near the notch vertex there is no refinement in the angular direction. Therefore,

convergence as r goes to zero is difficult to judge, though, divergence can be obvious.)

The coarse grid for the first singular problem (i=1) is shown in Figure 4, while that for the

second singular problem is displayed in Figure 5. The dotted lines in Figures 4 and 5 are

the smooth curves that represent the flanks. Since the finite element code uses linear

elements, these curves are better approximated upon grid refinement For all three

problems, three grids were used in the stress analysis. The coarse grids have 68 elements

and 48 nodes. The medium grids have 264 elements and 159 nodes. The fine grids have

1040 elements and 573 nodes.
.5,-.

The second step of the analysis requires a method of determining the generalized

stress intensity factor from the stress and displacement fields generated from the finite

element analysis. The method employed, the H-integral 12], is from the family of path-

independent integrals. The major advantage of path-independent integrals is that the only

The prograrn used is PLANDJ, originally developed by J.L. Swedlow. It is used on the VMS/VAX at the .. ,'.

- Mechanical Engineering Department. Carnegie-Mellon University.
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12

errors accumulated are those from the numerical approximations present Another

advantage of these integrals is the fact that the symmetric and antisymmetric parts need

not be separated in the analysis. (For the argument supporting this statement, see

reference [3).) The path of integration is shown in Figures 3, 4 and 5. Notice that the

inside path is chosen so that the curvature of the notch flanks in the two singular

problems (i = 1 and 2) does not interfere with the independence of the integration path.

The H-integral program uses the second-order trapezoidal rule for the integration. The

nodal values along the path of integration are used as points of numerical integration. The

complementary stress fields and displacement fields used in the H-integral (see reference

[2)) are determined from the (r,A) coordinates of the nodes along the path. The actual

nodal displacements are read from the finite element output The stresses at the nodes are

determined from nodal averages of the surrounding elements of each node along the

integration path.

RESULTS

In presenting the results of this analysis, some sort of verification is required. One

common method of verification of the finite element method is to check convergence at

nodes common to all three grids used for each problem In the nonsingular case,

convergence to the exact solution (6) is required. In the other two cases, convergence

within the three associated grids is desired. As stated earlier, since there is no grid

refinement in the angular direction, convergence near the origin is difficult to assess.

Divergence, on the other hand, is clear when present Therefore, the nodal stresses acting

along the x-axis (0=0) are plotted for all three problems. (Figure 6, 7, and 8.)

Convergence to the exact solution in the nonsingular problem (i=0) is seen clearly (Figure 6).

The antisymmetry in the problem is observed in that or. = 0 and -r. is finite along the

x-axis. Convergence at r=0 for r is not obvious (though, as explained earlier, it is not

particularly expected). However, divergence is not noticed.

Comparing the expected singular problems (i = 1 and 2), divergence at the origin is

clear. For the singular problem i=1 (Figure 7), ar80 at r = 0 is divergent, where the trend

of 7r8 is not obvious. This is consistent with what will be seen later, problem i = 1 has a

V



1j3

-4A-

'IA'

E LOO-

I, o

0 ive,6



* - S - - - -- .. .-

-p

* 
55

14 *~*54

VNp
p.

.5-.
*555~
V

S

olO -~

S - 5.p0 * N - - '5,'

c.~zc~
- ~-Ill5 OP

9-20

4.

S(,'.~VLAR ~ I
£~ ~

4. 
'-5.

.5. 5-.

5- :~ ::~
**5*4*

5-.,

5-4 -~

0 5-.'

-5'.E C
-. 1.4 * '. '5

-*1. * . g * g *. K * 5
4.

4.. -

-i Tre
4.*5

r'~ur~ t.
- 4.

~dV

'A
4..

'-5

5-
5*

V
V

4. 5*

.5 '
d

5-

**5 -~ % ~ '.'~ ~ ~
*5** - 5- 5S.*-*



-~~~W W.---.---

15

'-p'

"/- r--

0 0..

i~if

-,.

%" "

----I Ic oc-r ie

-,;-'

.. '.. '.-
'., '2.'/.

-, ; -.

. • o .."

- .'I **w : . 1

p '.--



16

ONO

mode I singularity and no mode II. The results for a,9 9 and TrI for problem i=2 (Figure 8) .

are divergent at r=O This is also consistent since both mode I and 11 singularities are

present in the problem.

Another method of verification is the fact that where there is no singularity present,

H : K should be zero. The H -integral of the nonsingular problem oscillates about zero.

And is. in fact, numerically zero for our purposes. (The H -integral cannot be determined .*

for the e gervalue equal to 1.0, see reference [2).)

For the nonsingular problem (i=0), the eigenvalues corresponding to both equations (9)

'- and (11) are simply equal to 1.0. Therefore, the stress and displacement fields are of the

* order one The mode I eigenvalue of the first singular problem (i=1) is X 0.5818: this

is the only singular stress field in this problem. For the second singular problem (i=2),

however, singularities in both modes exist That is, X = 0.5554 and X = 0.9528. The

corresponding results of the H-integration are presented in Table I.

Notice how the value of the dimensionless K in problems i= 1 and 2 are virtually equal

in magnitude but opposite in sign. This could have been expected from the beginning since

the original (nonsingular) material angle is perturbed about the same in both directions for

each of the singular problems (i.e. a,1 = a- 6 and a2  =a +). Notice, also, that the value

of KII for problem i=2 is larger in magnitude than K. This is expected since the loading

used was derived from an antisymmetric problem. The antisymmetric singularity should then

be dominant

CONCLUDING REMARKS

In general, re-entrant corners produce stress fields which are singular as the notch

vertex is approached. However, a configuration can be found at a particular material angle

and loading that will produce all regular stress fields. Slight perturbations in geometry

produce predictable behavior in the stress intensity factor. Since the applied loading in this

particular problem is based on an antisymmetric configuration, the mode II singularity has a

larger participation factor than that of the mode I. Perturbing the material angle in equal

magnitude but opposite direction, results in equal but opposite stress intensity factors for

mode 1.

_ 4
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Table t. Dimensionless Stress Intensity Factors (K = K I (ul-J a-X ) "."p

-aKrModem/ Coarse Medium Fine

Problem 0
Mode I 1.000 128.70 0.000 0.000 0.000

Problem 1
Mode I 0.582 12590 -0.066 -0060 -0058

Problem 2 .,
Mode I 0.555 131.90 0.063 0.060 0,059 ",-
Mode II 0.953 131.9 °  0.648 0.610 0632

= eigo-value after Williams 1 .,-

= half the material angle of re-entrant corner

Even though the behavior of the stress intensity factor may be predictable, the

problem still exists in that these singular fields are not able to interact with the other

regular stress fields that are present The divergent stresses acting along y = 0 in the

singular problems (i = 1 and 2) highlight 1;is difficulty. Studying the behavior of the stress

intensity factor may lead to a better understanding of what is occuring :n these re-entrant

configurations.
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ON OBTAINING FRACTURE TOUGHNESS VALUES FROM THE LITERATURE
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Recently, extensive compendiums of sources of fracture toughness data
have been assembled by Hudson and Seward [1,2]. These lists of references
naturally prompt the question as to what an engineer would find upon con-
sulting them in terms of actual values of fracture toughness for a given
material. The intent of this note is to indicate an answer.

In choosing specific metals for which to obtain fracture toughness
values, we look to ones with large listings of data sources so as to
gauge any variability present. To this end we select AISI 4340 steel and
7075-T6 aluminum. We focus on plane strain fracture toughness values
(K Ic ) as governed by ASTM standards since these are more generally regard-
ed as being material properties. We do not check, however, whether or not
a given test furnishing a K value complies with all of the specifications
in ASTM E399 [3], simply belCuse none of the references reviewed provided IS
sufficient information to enable a complete check. Hence values are in-
cluded as valid K. if their contributors claim them as such. Since we
frequently encountered plane stress fracture toughness values (K ) in the

cdata for 7075-T6 aluminum, we include these as a separate set for com- -.. .
parison. Further by way of comparison, we note yield strengths (a),
since a may reasonably be viewed as the uniaxial tension test qua[tity
analogogs to initial unstable crack propagation in a brittle material.
In processing the data we distinguish between markedly different specimen % .
types reported in a single source but otherwise use mean values for each -.-k".'
source. That is, when what is in essence the same test is repeated a .
number of times and outcomes recorded, we merely extract the mean*. For
these average values, we note the number of essentially independent sources
and calculate an overall mean. To estimate the variability we also cal-
culate the ranges and 95 percent confidence intervals (1.96s, s being the
standard deviation). In justification of the' second, histograms of the
data show good agreement with the expected frequencies in a normal distri-
bution (possibly because the individual data typically represent mean
values themselves and the central limit theorem applies to some extent).
The only exception to this agreement occurs for the K, values for 7075-T6.
These data, though, conformed well with a normal distfibution on taking
logs and accordingly a log transformation was used to determine the confi-
dence interval in this instance. The results are sa rized in Table 1;
details of K values are shown in Tables 2,3 wherein single numbers in
brackets denoie original sources, hyphenated numbers the corresponding
reference in [1] or [2], and a virgule between the two implies as reported.
in the latter, e.g. [61/11-12] is [6]'s data as drawn from [12] in [1]**.
*For the 7075-T6 KI , about a quarter of the results were designated as
being for a longituSinal orientation and a like fraction as being for a
transverse orientation with the remainder being unspecified. Given that
the difference between the means for all the longitudinal and transverse
cases was found to be less than 2.5 percent, the effects of orientation
for this alloy were not regarded as being sufficiently significant to merit
distinct classification.
**In the interests of brevity we do not relist references given in [1], [2].
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Examining Table 1, we find that the variability in plane strain frac-
ture toughness for AISI 4340 steel is 100 percent of the overall mean when
based on the range, 87 percent when based on the confidence interval The
corresponding percentages for 7075-T6 aluminum are 162 percent and 108
percent. These wide fluctuations are in marked contrast to the respective
percentages for the yield strengths which are 17 percent and 19 percent
for the steel, and 22 percent and 21 percent for the aluminum. Indeed
they are quite comparable to the variations in plane stress fracture
toughness values.for 7075-T6, viz, 110 percent and 72 percent*.

Such diverse It data demonstrate that the engineer needs to exercise
considerable care 19drawing a value of plane strain fracture toughness .

for a particular material from the literature. Short of undertaking the .1
time consuming task of collecting a sufficient set of references as a way ZS-of assessing variations as here, no reasonably certain methodology for
ensuring a conservative estimate of fracture toughness appears to exist.
Possibly, if a single value is found and then assumed to be at the upper
limit of the ranges involved and a safety factor applied to reduce it to
the lower, a conservative KT could be expected. Such safety factors
here would be 2.9, 2.5 for ESI 4340 and 3.7, 2.9 for 7075-T6. These
suggest that a safety factor of 3 might be adequate, although there is
really no guarantee of this being so for another material. Indeed, the
fact that the plane strain fracture toughness data display more than five"

times greater variability than the yield stress data and vary about as %

such as the plane stress values which are known to be geometry dependent,
raises serious doubts concerning the notion of Kic being a material pro-
perty. An engineer continuing to interpret and use it as such may there-
fore be making significant errors. NA
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Table 1. Mean valuen and variability of some material data

95% *~

Material Quantity No. of Mean Range Confidence

data value interval

Steel- a 36 1500 1370-1630 1360-1650

AISI 4340 K1  32 70.5 37.4-108.2 39.8-101.2

Aluminum- CY 42 507 434-545 452-561-
y

7075-T6 K I 29 34.5 21.0-76.9 19.4-56.7%

K c94 70.7 32.9-111.0 45.1-96.2

1/2
Note: W values are in M~a; Kic K values are in M~am

y Icc

Table 2. Plane strain fracture toughness values for AISI4340 steel4

K-1 c 1  KIc Ic11
(Ma m )Source (Mpa m ) Source (MPa m ) Source

64.8 [1-21 70.8 [11/[1-15] 108.2 [121/[1-1561

57.7 [4]1[51/ 53.8 [1-25] 57.7 [1-160] S. .1

76.9 [1-121] 3. 58.2 [131/[2-31

58.2 [6]/i[-12] 76.9
89.0 37.4 [1-1521 89.0
90.1 65.45.2 [4/23

65.9

747 7/[-1] 65.9 57.6 12-271

85.7 [83/fl-iS] 67.0378 [5[210

74.7 [9]I[1-15] 7. 63.0

84.562.6 [2-329]
87.9 [10]/[1-151 87.9

rmt Journ of Fracture 30 (1986)
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Table 3. Plane strain fracture toughness values for 7075-T6 aluminum

* K K K .

1 1 /2 ) Ic1/2 c1/2)
(MPa M Source (MPa m ) Source M~a m Source

37.0 [161/1-2] 31.6 [20]/[1-51] 26.6 [2-66]

21.0 [1-5] 30.8 [1-52] 28.2 [241/[2-130]

27.7 24.2 [2-2] 31.9 [25]/[2-130J

38.5 [1-6] 39.1 [21]/[2-3] 29.9 [26]/[2-1301

48.9 25.3 [22]/[2-3] 26.4 [27]/[2-137]

35.9 [1-11] 34.5 [231/2-27] 35.2 [2-153]

48.1 76.9 21.6 [2-1571

53.7 34.8 [2-39] 32.6 [28]/[2-1591

29.1 [171/[1-12] 35.7 [2-59] 34.8 [291/[2-1591

28.6 [18]/11-15]

30.8 [191/[1-24]

% a

%
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